期刊文献+

Catalytic reductive amination of furfural to furfurylamine on robust ultra-small Ni nanoparticles

原文传递
导出
摘要 The synthesis of primary amines via reductive amination in the presence of NH_(3)and H_(2),as a green and sustainable process,has attracted much attention.In this paper,we prepared series of Ni/SiO_(2)catalysts with deposition-precipitation and impregnation methods,and their catalytic performances on the reductive amination of a biomass derived compound of furfural to produce furfurylamine were studied.The catalytic activity and the yield were correlated to the structure and the surface properties of catalysts largely.The Ni/SiO_(2)is of high Lewis acidity and small Ni particle with numerous large Ni flat step surface showed high activity and selectivity,it afforded a reaction rate of 12.8 h^(−1)and a high yield to furfurylamine around 98%.These results are superior to the most non-noble metal catalysts reported so far.Moreover,the reaction route was examined with the unit control reactions of the intermediate.To produce furfurylamine selectively,the most suitable catalyst should have the moderate but not the highest activity in activation of hydrogen and hydrogenation in the reductive amination of furfural.This work provides some useful information for the catalytic reductive amination of aldehydes both in the design of catalyst and the reaction route.
出处 《Nano Research》 SCIE EI CSCD 2023年第3期3719-3729,共11页 纳米研究(英文版)
基金 the financial support from the National Natural Science Foundation of China(Nos.22172155 and 22072142) the Youth Innovation Promotion Association CAS(No.2016206).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部