期刊文献+

<i>In Vitro</i>Characterization of Cell Surface Properties of 14 Vaginal <i>Lactobacillus</i>Strains as Potential Probiotics

<i>In Vitro</i>Characterization of Cell Surface Properties of 14 Vaginal <i>Lactobacillus</i>Strains as Potential Probiotics
下载PDF
导出
摘要 Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Human-origin <i>Lactobacillus</i> is a preferable source of probiotic bacteria. This study screened 14 vaginal <i>Lactobacillus</i> strains as probiotic candidates by investigating probiotic-related cell surface characteristics including cell surface hydrophobicity (CSH), Lewis acidity/basicity, autoaggregation, and biofilm formation. Moderate to high CSH and autoaggregation, high basicity and low acidity were prevalent in the 14 tested strains. Biofilm formation varied in a large range among the 14 tested strains. CSH showed a high correlation with Lewis acidity and autoaggregation, while Lewis acidity was highly correlated with autoaggregation and biofilm formation. Four strains were selected as promising probiotic strains. This study was the first one to compare antibiotic sensitivity between biofilm-forming cells and planktonic cells of <i>Lactobacillus</i> species, and found that biofilm-forming cells of a <i>L. fermentum</i> strain had a significantly higher survival rate than planktonic cells in cefotaxime, cefmetazole and tetracycline, but were as sensitive to oxacillin and ampicillin as planktonic cells were. Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Human-origin <i>Lactobacillus</i> is a preferable source of probiotic bacteria. This study screened 14 vaginal <i>Lactobacillus</i> strains as probiotic candidates by investigating probiotic-related cell surface characteristics including cell surface hydrophobicity (CSH), Lewis acidity/basicity, autoaggregation, and biofilm formation. Moderate to high CSH and autoaggregation, high basicity and low acidity were prevalent in the 14 tested strains. Biofilm formation varied in a large range among the 14 tested strains. CSH showed a high correlation with Lewis acidity and autoaggregation, while Lewis acidity was highly correlated with autoaggregation and biofilm formation. Four strains were selected as promising probiotic strains. This study was the first one to compare antibiotic sensitivity between biofilm-forming cells and planktonic cells of <i>Lactobacillus</i> species, and found that biofilm-forming cells of a <i>L. fermentum</i> strain had a significantly higher survival rate than planktonic cells in cefotaxime, cefmetazole and tetracycline, but were as sensitive to oxacillin and ampicillin as planktonic cells were.
作者 Shao-Ji Li Jae-Seong So Shao-Ji Li;Jae-Seong So(SignalDT Biotechnologies (SZ), Inc., Shenzhen, China;Department of Biological Engineering, Inha University, Incheon, Korea)
出处 《Advances in Microbiology》 2021年第2期144-155,共12页 微生物学(英文)
关键词 <i>Lactobacillus</i> PROBIOTICS Cell Surface Hydrophobicity Lewis Acidity Lewis Basicity Autoaggregation BIOFILM Antibiotics <i>Lactobacillus</i> Probiotics Cell Surface Hydrophobicity Lewis Acidity Lewis Basicity Autoaggregation Biofilm Antibiotics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部