期刊文献+

深度学习在耳科学中的研究与应用进展 被引量:3

Research and application progress in deep learning in otology
下载PDF
导出
摘要 随着深度学习算法的优化及医学大数据资料的积累,近年来深度学习技术在耳科学各领域中研究应用广泛。目前,耳科学中的深度学习研究结合了耳内窥镜、颞骨影像、听力图、术中图像等多种资料,涉及耳科疾病诊断(包括耳廓畸形、外耳道疾病、中耳疾病及内耳疾病)、治疗(指导用药及术式规划)及预后预测(涉及听力转归和言语学习)等方面。根据资料的类别及研究目的(疾病诊断、治疗及预后预测)的差异,可选用不同的神经网络模型以发挥其算法的优势,深度学习对耳科疾病具有良好的辅助诊疗价值。深度学习在耳科疾病的临床诊断与治疗中具有较好的应用前景。 With the optimization of deep learning algorithms and the accumulation of medical big data,deep learning technology has been widely applied in research in various fields of otology in recent years.At present,research on deep learning in otology is combined with a variety of data such as endoscopy,temporal bone images,audiograms,and intraoperative images,which involves diagnosis of otologic diseases(including auricular malformations,external auditory canal diseases,middle ear diseases,and inner ear diseases),treatment(guiding medication and surgical planning),and prognosis prediction(involving hearing regression and speech learning).According to the type of data and the purpose of the study(disease diagnosis,treatment and prognosis),the different neural network models can be used to take advantage of their algorithms,and the deep learning can be a good aid in treating otologic diseases.The deep learning has a good applicable prospect in the clinical diagnosis and treatment of otologic diseases,which can play a certain role in promoting the development of deep learning combined with intelligent medicine.
作者 卯爽 吴学文 侯木舟 梅凌云 冯永 宋剑 MAO Shuang;WU Xuewen;HOU Muzhou;MEI Lingyun;FENG Yong;SONG Jian(Department of Otorhinolaryngology Head and Neck Surgery,Xiangya Hospital,Central South University,Changsha 410008;Hunan Provincial Key Laboratory of Major Otorhinolaryngology Diseases,Changsha 410008;National Clinical Research Center for Geriatric Diseases(Xiangya Hospital),Changsha 410008;School of Mathematics and Statistics,Central South University,Changsha 410083;Department of Otorhinolaryngology Head and Neck Surgery,Changsha Central Hospital Affiliated to South China University,Changsha 410018,China)
出处 《中南大学学报(医学版)》 CAS CSCD 北大核心 2023年第3期463-471,共9页 Journal of Central South University :Medical Science
基金 国家自然科学基金(81700923) 湖南省自然科学基金(2021JJ31108,2021JJ41017) 中国博士后科学基金(2021M693566,2021T140751) 湖南省科技创新人才计划(2020RC2013)。
关键词 深度学习 神经网络 颞骨 耳科学 deep learning neural network temporal bone otology
  • 相关文献

参考文献11

二级参考文献86

  • 1欧阳丽炜,袁勇,郑心湖,张俊,王飞跃.基于区块链的传染病监测与预警技术[J].智能科学与技术学报,2020(2):135-143. 被引量:25
  • 2韩德旭,冯勃,韩东一.完壁式乳突根治—鼓室成形术[J].中华耳科学杂志,2004,2(4):289-291. 被引量:18
  • 3BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36. 被引量:1
  • 4BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127. 被引量:1
  • 5HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554. 被引量:1
  • 6BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160. 被引量:1
  • 7LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324. 被引量:1
  • 8VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103. 被引量:1
  • 9VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408. 被引量:1
  • 10YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288. 被引量:1

共引文献692

同被引文献38

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部