期刊文献+

基于深度学习的刀具磨损形态识别与磨损量智慧监测的策略研究

Tool Wear State and Wear Amount Based on Depth Learning Research on The Strategy of Intelligent Monitoring
下载PDF
导出
摘要 数控机床在加工过程中,刀具磨损状态问题会对被加工零部件的表面质量、尺寸及准确度等产生极大影响。加工过程中,为缩短机床停机时间和减少因刀具损坏而引起的加工成本损失,因此对刀具磨损的实时监测具有重要意义。本文阐述了国内外关于刀具磨损监测的发展过程与监测方法,针对每一种监测信号方法进行了分析,指出存在的问题及优缺点,提出了对运用深度学习的研究策略运用到刀具磨损的监测领域中。 In the process of NC machine tool processing,tool wear will have a huge impact on the surface quality and dimensional accuracy of the parts to be processed.In the process of machining,in order to reduce the machine tool downtime and reduce the cost loss caused by tool wear,real-time monitoring of tool wear is of great significance.This paper describes the development process and monitoring methods of tool wear monitoring at home and abroad,analyzes each monitoring signal method,points out the existing problems,advantages and disadvantages,and puts forward the research strategy of applying depth learning to the field of tool wear monitoring.
作者 梁科 Liang Ke(Hebi Polytechnic,Hebi 458030,China)
出处 《内燃机与配件》 2023年第5期68-71,共4页 Internal Combustion Engine & Parts
基金 鹤壁职业技术学院重点科研项目(2022-KJZD-008)。
关键词 磨损量 策略研究 深度学习 刀具磨损状态 Wear amount Strategy research Deep learning Tool wear status
  • 相关文献

参考文献18

二级参考文献91

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部