期刊文献+

基于PCC-LSTM刀具磨损预测方法研究 被引量:1

Research on the tool wear prediction method based on PCC-LSTM
下载PDF
导出
摘要 基于铣削加工过程中的电流、振动、声发射等信号,建立了基于皮尔逊相关系数(PCC)和长短期记忆人工神经网络(LSTM)的刀具磨损预测模型。模型充分利用PCC的降维优势以及LSTM的时间序列预测优势,实现刀具磨损预测精度与预测效率的协调统一。实验结果表明,该模型可以实现刀具磨损状态的快速、精确预测,对铣削加工质量的提升具有重要意义。 A tool wear prediction model based on Pearson correlation coefficient(PCC)and long-and short-term memory artificial neural network(LSTM)is established based on current,vibration and acoustic emission signals in milling process.The model makes full use of the advantages of dimension reduction of PCC and time series prediction of LSTM to achieve the coordination and unification of tool wear prediction accuracy and prediction efficiency.The experimental results show that this model can realize the rapid and accurate prediction of tool wear state,which is of great significance for the improvement of milling quality.
作者 李阳光 冯都忠 季海晨 赵君怡 Li Yangguang;Feng Duzhong;Ji Haichen;Zhao Junyi(College of Mechanical and Electrical Engineering,Hohai University,Jiangsu Changzhou,213002,China)
出处 《机械设计与制造工程》 2023年第3期73-77,共5页 Machine Design and Manufacturing Engineering
关键词 刀具磨损 磨损状态监测 磨损量预测 皮尔逊相关系数 长短期记忆人工神经网络 tool wear wear condition monitoring wear prediction Pearson correlation coefficient long and short term memory artificial neural network
  • 相关文献

参考文献9

二级参考文献62

共引文献87

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部