摘要
多相自励磁同步电机具有起动转矩大,无需永磁体,且气隙磁场可调的优势,广泛应用于低速爬坡等短时特殊工况下的大转矩需求。作为一种新型电机,其励磁机理数学模型尚不明确,直接制约了该电机控制系统的发展。为此,针对该电机稳态下励磁展开研究,对自励磁同步电机的结构和高频励磁原理进行分析,研究了稳态下定子绕组中注入高频电流与转子励磁绕组上产生励磁电流之间的数学关系。基于此,获得电磁转矩表达式,并建立了该电机在静止和旋转两种坐标系下的运动方程。在旋转dq坐标系下搭建了MATLAB/Simulink仿真模型与ANSYS Maxwell有限元仿真模型,并进行对比分析,其结果验证了该数学模型的正确性。
Multi-phase self-excited synchronous motor has the advantages of large starting torque,no need for permanent magnet,and adjustable air gap magnetic field,which is widely applied to the large torque demand under short-term special conditions such as low speed climbing.As a new type of motor,its excitation mechanism mathematical model is not clear,which directly restricts the development of the motor control system.Therefore,the excitation of the motor under steady state is studied.The basic structure and high-frequency excitation principle of the self-excited synchronous motor are analyzed.The mathematical relationship between the high-frequency current injected into the stator winding and the excitation current generated on the rotor excitation winding under steady-state conditions is studied.On this basis,the electromagnetic torque expression is obtained.The motion equations of the motor in stationary and rotating coordinate systems are established.Finally,the MATLAB/Simulink simulation model is built under the rotating dq coordinate system and the Maxwell finite element simulation results are compared and analyzed.The results verify the correctness of the mathematical model.
作者
杨鑫
林晓刚
赵宇纬
王晓璨
解伟
YANG Xin;LIN Xiaogang;ZHAO Yuwei;WANG Xiaocan;XIE Wei(School of Advanced Manufacturing,Fuzhou University,Jinjiang 362200,China;Quanzhou Institute of Equipment Manufacturing Haixi Institutes,Chinese Academy of Sciences,Quanzhou 362000,China;School of Electrical Engineering and Automation,Xiamen University of Technology,Xiamen 361024,China)
出处
《电机与控制应用》
2023年第5期46-52,60,共8页
Electric machines & control application
基金
四川省重点研发项目(2021YFG0079)。
关键词
自励磁同步电机
高频电流注入
电磁转矩
self-excited synchronous motor
high-frequency current injection
electromagnetic torque