期刊文献+

四旋翼微型飞行器的区间二型模糊神经网络自适应控制 被引量:9

Adaptive control of quadrotor MAV using interval type-Ⅱ fuzzy neural network
下载PDF
导出
摘要 针对四旋翼微型飞行器控制系统中存在不确定性、外界干扰等影响控制精度的问题,提出了基于区间二型模糊神经网络(IT_IIFNN)的四旋翼微型飞行器自适应控制方案。首先,根据四旋翼微型飞行器的动力学模型,设计了基于IT_IIFNN的四旋翼微型飞行器自适应控制器,该控制器由两部分构成,其中IT_IIFNN用来在线逼近系统不确定性;鲁棒补偿器用来实时补偿IT_IIFNN的逼近误差以及外界干扰。其次,利用Lyapunov稳定理论证明此飞行器控制系统闭环稳定性。最后,通过四旋翼微型飞行器样机来验证IT_IIFNN自适应控制器的优越性。验证结果显示,在加入风速为1.5m/s的外界干扰条件下,跟踪误差可近似达到10-2。结果表明,IT_IIFNN自适应控制器具有良好的跟踪精度、稳定性及鲁棒性。 The adaptive control scheme of a quadrotor Micro Aerial Vehicle (MAV) by using Interval TypeII Fuzzy Neural Network (IT_IIFNN) was proposed to improve the control accuracy that was declined by the uncertainty, external disturbances,etc. Based on the quadrotor MAV dynamic model ing, an adaptive controller composing of two parts was designed by using the IT IIFNN,in which the IT_IIFNN was developed to approximate the uncertainty function and a robust compensator was pro posed to confront the approximate errors of IT_IIFNN and external disturbances in realtime. Moreo ver,the Lyapunor stability theory was taken to prove the stability of the closedloop control system inthe quadrotor MAV. Finally, the superiority of the adaptive controller was verified by a prototype of the quadrotor MAV,which is shown that the tracking error approximated is 102 under the interfer ence conditions of wind speed of 1.5 m/s. Experiments demonstrate that proposed control scheme can offer perfect tracking accuracy, stability and robustness.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2012年第6期1334-1341,共8页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.50905174) 吉林省自然科学基金资助项目(No.20101530)
关键词 区间二型模糊神经网络(IT-IIFNN) 四旋翼微型飞行器 鲁棒补偿器 Lyapunov稳定理论 稳定性 鲁棒性 Interval Type-II Fuzzy Neural Network (IT_IIFNN) quadrotor Micro Aerial Vehicle(MAV) robust compensator Lyapunov stability theory stability robustness
  • 相关文献

参考文献14

  • 1WU S Q, ER M J. Dynamic fuzzy neural networks-a novel approach to function approximation [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part I3, 2000,30(2) :358-364. 被引量:1
  • 2WU S Q, ER M J, GAO Y. A fast approach for ahtornatic generation of fuzzy rules by generalized dynamic fuzzy neural networks[J]. IEEE Transac- tions on Fuzzy Systems, 2001,19(4) ..578-594. 被引量:1
  • 3GAO Y, ER M J, YANG S. Adaptive control of robot manipulators using fuzzy neural networks [J]. IEEE Transactions on Industrial Electronics, 2001,48(6) : 1274-1278. 被引量:1
  • 4WANG J S, LEE C S G. Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle [J]. IEEE Transactions on Robotics and Automation, 2004,19(2) :283-295. 被引量:1
  • 5孙强,程明.基于模糊神经网络的双凸极永磁电机非线性建模[J].控制理论与应用,2007,24(4):601-606. 被引量:9
  • 6JINHYUN. Accurate modeling and robust hovering control for a Qua&rotor VTOL aircraft [J]. Intel- ligent Robot System, 2004,57:9-26. 被引量:1
  • 7TAYEBI A, MCGILVRAY S. Attitude stablilization of a VIOL quadrotor aircraft [J].IEEE Transaction on Control Systems Technology , 2006,14 : 562- 571. 被引量:1
  • 8DAEWON L,JIN KIM H,SHANKAR S. Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter [J]. International Journal of Control, Automation, and Systems, 2009, 3: 418- 428. 被引量:1
  • 9WANG C H,CHENG C S, LEE T T. Dynamical optimal training for interval type-2 fuzzy neural net-work (T2FNN) [J]. IEEE Transactions on Sys- tems, Man, and Cybernetics, Part B, 2004,34 (3) : 1462-1477. 被引量:1
  • 10李迪,陈向坚,续志军,杨帆,牛文达.自组织递归区间二型模糊神经网络在动态时变系统辨识中的应用[J].光学精密工程,2011,19(6):1406-1413. 被引量:9

二级参考文献54

共引文献44

同被引文献81

引证文献9

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部