摘要
为了提高深基坑施工过程中变形预测的准确度,提出一种基于小波变换分解与重构、采用遗传算法优化参数的支持向量机(GASVM)和自回归滑动平均(ARMA)模型相结合的组合模型预测方法。使用GASVM模型对小波分解后的趋势项进行一步预测和多步滚动预测,使用ARMA模型相应地对随机项进行预测,将预测值求和得到最终预测结果。以某地铁车站深基坑为案例,对3个监测点的支护桩深层水平位移进行预测分析,得到其一步预测的短期预测值和多步滚动预测的中长期预测值,并与单一采用GASVM模型得到的预测值进行对比。结果表明:组合模型有效减小了预测误差,在短期和中长期预测中均取得令人满意的结果。
In order to improve the accuracy of deformation prediction during construction of deep foundation pits,this paper proposes a support vector machine with genetic algorithm optimized parameters(GASVM)and autoregressive moving average(ARMA)model based on wavelet transform decomposition and reconstruction.This paper uses GASVM model to make one-step prediction and multi-step rolling prediction for trend items after wavelet decomposition,utilizing ARMA model to predict random items accordingly,and to sum the predicted values to get the final prediction result.Finally,taking a deep foundation pit of a subway station as a case,the prediction and analysis of the deep horizontal displacement of the supporting piles at the three monitoring points are obtained,and the short-term prediction value of one-step prediction and the medium-and long-term prediction value of multi-step rolling prediction are obtained.The predicted value of the GASVM model is used for comparison.The results show that the combined model in this paper effectively reduces the predictive error,and has achieved satisfactory results in both short-term and medium-and long-term estimations.
作者
牛帅星
李庶林
刘胤池
安树正
黄玉仁
NIU Shuaixing;LI Shulin;LIU Yinchi;AN Shuzheng;HUANG Yuren(School of Architecture and Civil Engineering,Xiamen University,Xiamen 361005,Fujian,P.R.China;China Railway 24th Bureau Fuzhou Branch,Fuzhou 350013,P.R.China)
出处
《土木与环境工程学报(中英文)》
CSCD
北大核心
2023年第3期16-23,共8页
Journal of Civil and Environmental Engineering
基金
国家自然科学基金(51674218)。
关键词
时间序列预测
深基坑变形
小波变换
支持向量机
遗传算法
自回归滑动平均模型
time series forecast
deep foundation pit deformation
wavelet transform
support vector machine
genetic algorithm
autoregressive moving average model