期刊文献+

基于注意力机制的可解释点击率预估模型研究 被引量:3

Study on Interpretable Click-Through Rate Prediction Based on Attention Mechanism
下载PDF
导出
摘要 在推荐系统研发中,点击率(Click-Through Rate,CTR)预估是非常重要的工作,点击率预估精度的提升直接影响到整个推荐系统的收益,对其性能和解释性的研究有助于理解系统决策的机理,同时还能帮助优化需求和系统设计。当前点击率预估深度模型多基于线性特征交互和深度特征提取进行设计。由于深度模型的黑盒特点,该类模型在解释性方面存在局限性,并且在先前的研究中,对点击率预估模型的解释性研究非常少。因此,文中基于多头自注意力机制,对该类模型的解释性进行研究,通过多头注意力机制对特征嵌入、线性特征交互和深度部分进行增强和解释,在深度部分设计了两种模型,即注意力增强的深度神经网络和注意力叠加的深度模型,通过计算每个模块的注意力得分对其进行解释。所提方法在多个真实数据集上进行了大量实验,结果表明所提方法能够有效提升模型效果,并且模型自身带有一定的解释性。 Click-Through Rate(CTR)prediction is critical to recommender systems.The improvement of CTR prediction can directly affect the earnings target of the recommender system.The performance and interpretation of the CTR prediction algorithm can guide developers to understand and evaluate recommender system accurately.That's also helpful for system design.Most existing approaches are based on linear feature interaction and deep feature extraction,which have poor model interpretation in the outcomes.Moreover,very few previous studies were conducted on the model interpretation of the CTR prediction.Therefore,in this paper,we propose a novel model which introduces multi-head self-attention mechanism to the embedding layer,the linear feature interaction component and the deep component,to study the model interpretation.We propose two models for the deep component.One is deep neural networks(DNN)enhanced by multi-head self-attention mechanism,the other computes high-order feature interaction by stacking multiple attention blocks.Furthermore,we calculate attention scores and interpret the prediction results for each component.We conduct extensive experiments using three real-world benchmark datasets.The results show that the proposed approach not only improves the effect of DeepFM effectively but also offers good model interpretation.
作者 杨斌 梁婧 周佳薇 赵梦赐 YANG Bin;LIANG Jing;ZHOU Jiawei;ZHAO Mengci(China Unicom Research Institute,Beijing 100048,China;School of Computer Science,Beijing University of Posts and Telecommunications,Beijing 100876,China;School of Artificial Intelligence,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《计算机科学》 CSCD 北大核心 2023年第5期12-20,共9页 Computer Science
关键词 推荐系统 点击率预估 多头自注意力机制 特征交互 模型解释性 Recommender system Click-Through Rate prediction Multi-head self-attention mechanism Feature interaction Model interpretability
  • 相关文献

参考文献6

二级参考文献35

  • 1姚正.关于决策树分类模型的评分函数研究[J].管理学报,2005,2(S2):166-168. 被引量:4
  • 2Chatterjee P, Hoffman DL, Novak TP. Modeling the clickstream: Implications for Web-based advertising efforts. Marketing Science, 2003,22(4):520-541. [doi: 10.1287/mksc.22.4.520.24906]. 被引量:1
  • 3Wang C, Zhang P, Choi R, D'Eredita M. Understanding consumers' attitude toward advertising. In: Proc. of the 8th Americas Conf. on Information System. 2002. 1143-1148. 被引量:1
  • 4Ribeiro-Neto B, Cristo M, Golgher PB, Moura ES. Impedance coupling in content-targeted advertising. In: Proe. of the SIGIR 2605. New York: ACM Press, 2005. 496-503. [doi: 10.1145/1076034.1076119]. 被引量:1
  • 5Lacerda A, Cristo M, Goncalves MA, Fan WG, Ziviani N, Ribeiro-Neto B. Learning to advertise. In: Proc. of the SIGIR 2006. New York: ACM Press, 2006. 549-556. [doi: 10.1145/1148170.1148265]. 被引量:1
  • 6Broder AZ, Fontoura M, Josifovski V, Riedel L. A semantic approach to contextual advertising. In: Proc. of the SIGIR. 2007. 559-566. [doi: 10.1145/1277741.1277837]. 被引量:1
  • 7Chakrabarti D, Agarwal D, Josifovski V. Contextual advertising by combining relevance with click feedback. In: Proc. of the 17th Int'l Con1: on World Wide Web (WWW 2008). Beijing: ACM Press, 2008.417-426. [doi: 10.1145/1367497.1367554]. 被引量:1
  • 8Yih W, Goodman J, Carvalho VR. Finding advertising keywords on Web pages. In: Proc. of the 15th Int'l Conf. on World Wide Web (WWW 2006). New York: ACM Press, 2006. 213-222. [doi: 10.1145/1135777.1135813]. 被引量:1
  • 9Belkin N, Croft B. Information filtering and information retrieval. Communications of the ACM, 1992,35(12):29-37. [doi: 10.1145/138859.138861]. 被引量:1
  • 10Balabanovic M, Shoham Y. Fab: Content-based collaborative recommendation. Communications of the ACM, 1997,40(3):66-72. [doi: 10.1145/245108.245124]. 被引量:1

共引文献217

同被引文献37

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部