期刊文献+

关于决策树分类模型的评分函数研究 被引量:4

Score Functions for Decision Tree Models
下载PDF
导出
摘要 在数据挖掘的研究与应用中,学者们提出了一系列的分类模型,如贝叶斯模型、决策树模型、人工神经网络模型等,其中决策树模型由于其简洁、高效、易于理解和使用,得到广泛的应用。然而,关于决策树评分函数的研究尚未取得令人满意的结果。分析了目前流行的一些评价指标,研究了其适用范围和局限,并对评分函数做了必要的补充和完善,试图建立一套相对科学合理的评价体系。 In the study and use of data mining technologies, some scholars have put forward a series of classification models, such as Bayesian classifier, decision tree, neural network and etc. Among these models, decision tree is widely used due to its simplicity, high-efficiency and easy-usage. But satisfactory progress has not made in the score functions of decision tree models. This paper analyzed some popular assessment methods and studied their applicable scopes and limits. Further more the author perfected the score functions of decision tree models to set up a logical assessment system.
作者 姚正
出处 《管理学报》 2005年第S2期166-168,共3页 Chinese Journal of Management
关键词 决策树模型 数据挖掘 评分函数 decision tree model data mining score function
  • 相关文献

参考文献2

二级参考文献8

  • 1Schlimmer J C, Fisher D. A case study of incremental concept induction [A]. Proceedings of AAAI-86 [C]. Philadelphia, 1986 被引量:1
  • 2Utgoff P E. Incremental Induction of Decision Trees [J].Mach Learn, 1989(4): 161 被引量:1
  • 3UtgoffP E. An improved algorithm for incremental induction of decision trees [A]. Proceedings of the Eleventh Int.Conference on Machine Learning [C]. New Jersey, 1994.318 被引量:1
  • 4Kalles D, Morris T. Efficient incremental induction of decision trees [J]. Mach Learn, 1996(1): 1 被引量:1
  • 5Kalles D, Papagelis A. Stable decision trees: Using local anarchy for efficient incremental learning [J]. Int J Artif Intell Tools, 2000, 9(1): 79 被引量:1
  • 6Piater J H, Riseman E M. Interactively training pixel classifiers [J]. Int J Pattern Recognit Artif Intell, 1999, 13(2):171 被引量:1
  • 7Elomaa T, Kaariainen M. An analysis of reduced error pruning[J]. J ArtifIntell Res, 2001,15:163 被引量:1
  • 8Wang X Z, Chen B, Qian G L, et al. On the optimization of fuzzy decision trees [J]. Fuzzy Sets Syst, 2000, 112: 117 被引量:1

共引文献8

同被引文献22

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部