期刊文献+

城市地下污水处理厂规模分类与工艺规模选择优化 被引量:1

Scale Classification and Optimization of Selecting Process Scale of Urban Underground Sewage Treatment Plants
下载PDF
导出
摘要 近年来,随着我国城市地下污水处理厂开发建设类型的不断增多,地下污水处理厂已成为城市市政工程建设的发展趋势。目前,我国城市地下污水处理厂规模类型还没有明确的标准规范,无法准确表达各城市地下污水处理厂处理规模的差异性。通过对城市地下污水处理厂处理规模和工艺分析,基于K-means算法,提出城市地下污水处理厂规模划分方法。根据城市地下污水处理厂不同污水处理工艺规模与数量的正态拟合,得出各工艺处理规模的分布曲线,明确各工艺的适宜规模类型。研究内容为城市地下污水处理厂规划与设计及工艺选择提供了参考依据。 In recent years,with the increase of types of urban underground sewage treatment plants in China,underground sewage treatment plant has become the trend of urban municipal engineering construction.At present,there is no clear standard for classifying the scales and types of urban underground sewage treatment plants in China,and the differences of the treatment scale of underground sewage treatment plants in each city cannot be accurately expressed.By analyzing the treatment scales and processes of urban underground sewage treatment plants in China,this paper proposes a classification method for scales of urban underground sewage treatment plants based on the K-means algorithm.According to the normal fitting of scales and numbers of different treatment processes of urban underground sewage treatment plants,the distribution curve of different process scales is derived,and the appropriate scale of each process is clarified.This study provides a good reference for the planning,design and process selection of urban underground sewage treatment plants.
作者 刘阳 张平 孙秋霜 LIU Yang;ZHANG Ping;SUN Qiushuang(College of National Defense Engineering,Army Engineering University of PLA,Nanjing 210007,China)
出处 《陆军工程大学学报》 2023年第2期16-22,共7页 Journal of Army Engineering University of PLA
基金 江苏省自然科学基金(BK20191330)。
关键词 城市地下污水处理厂 K-MEANS算法 规模分类 处理工艺 urban underground sewage treatment plant K-means algorithm scale classification treatment process
  • 相关文献

参考文献11

二级参考文献62

  • 1陆声链,林士敏.基于距离的孤立点检测研究[J].计算机工程与应用,2004,40(33):73-75. 被引量:44
  • 2李业丽,秦臻.一种改进的k-means算法[J].北京印刷学院学报,2007,15(2):63-65. 被引量:9
  • 3香港特别行政区渠务署.赤柱污水处理厂[R].,2002.5. 被引量:1
  • 4anderson.各地污水处理厂大全.(2008-02-03)[2009-10-12].http://www.chinacitywater.org/bbs/viewthread.php?tid=78090. 被引量:1
  • 5Mac Q J. Some methods for classification and analysis of mult- ivariate observations [ C ]//In: Proc. 5th Berkeley Symposium in Mathematics. Berkeley, USA : Univ of California, 1967. 被引量:1
  • 6GUHA S, RASTOGI R, SHIM K. CURE: An efficient clustering algorithm for large databases [ C ]//Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1998: 73-84. 被引量:1
  • 7Ester,Martin, Hans Peter Kriegel, et al. A Density Based Algoriihm for Discovering Clusters in Large Spatial Databases with Noise [ C ]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining(KDD-96). Ortland,Oregon: [ s. n. ] ,.1996. 被引量:1
  • 8Wang W, Yang J, Muntz R. STING : A Statistical Information Grid Approach to Spatial Data Mining[ C ]//Proc. of 1997 Intl. Conf. on Very Large Databases. Athens, Greece : [ s. n. ], 1997 : 186-195. 被引量:1
  • 9Kohonen T. Self -- organized Formation of Topologically Correct Feature Maps [ J ]. Biological Cybernetics, 1982,43 ( 1 ) : 59 -69. 被引量:1
  • 10Birger Jansson. Water and sewage in caverns and tunnels: thirty years experience in sweden. Underground space[J] , vol.4. No. 1.Pp47 - 51,1989. 被引量:1

共引文献559

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部