摘要
当前,数值模拟作为研究飞机结冰的主要手段之一,在计算结冰冰形时会引入大量参数不确定性,并影响数值模拟的精度和可信度。发展不确定性量化方法,科学量化这种不确定性对评估数值模拟结果具有重要意义。针对传统参数不确定性量化方法难以解决高维输入到输出的问题,基于本征正交分解和误差反向传播神经网络,提出了一种结冰冰形预测代理模型。以水滴中值粒径和温度为例,验证了代理模型单输入参数和双输入参数情况下的精度和泛化能力。最后,在代理模型计算的冰形基础上,结合蒙特卡洛采样,利用2σ准则确定结冰范围,发现水滴中值粒径不确定性主要影响明冰的冰角生长,而温度和水滴中值粒径不确定性的叠加主要作用于霜冰厚度。该研究为后续多结冰条件的影响分析和多维输入到输出的不确定性量化提供了思路。
As one of the main methods to study ice formation of aircraft,numerical simulation introduces a lot of parameter uncertainties when calculating ice formation,which affects the accuracy and reliability of the numerical simulation.It is important to develop methods of uncertainty quantification and quantify the uncertainty scientifically for evaluating numerical simulation results.To solve the problem of high-dimensional input-output that is difficult to be solved by traditional parameter uncertainty quantification methods,an ice shape prediction proxy model is proposed based on the proper orthogonal decomposition and error backpropagation neural network.The proxy model is proved to have high accuracy and excellent generalization ability under single input and double input parameters by taking the droplet median size and temperature as examples.Finally,on the basis of ice shape calculated by the proxy model with Monte Carlo sampling,the icing range is established by criteria 2σ.It is found that the uncertainty of droplet median size mainly affects the ice angle growth of glaze ice,while the superposition of temperature and droplet median size uncertainty affect the frost ice thickness.This study establishes a method for the subsequent impact analysis of multi-icing conditions and provides ideas for the uncertainty quantification of multi-dimensional input-output.
作者
郝云权
赵大志
李伟斌
孔满昭
刘森云
HAO Yunquan;ZHAO Dazhi;LI Weibin;KONG Manzhao;Liu Sengyun(School of Sciences,Southwest Petroleum University,Chengdu 610500,China;Key Laboratory of Icing and Anti/De-icing,China Aerodynamics Research and Development Center,Mianyang 621000,China;Aerodynamic Department,The First Aircraft Institute of AVIC,Xi'an 710089,China)
出处
《南京航空航天大学学报》
CAS
CSCD
北大核心
2023年第2期302-310,共9页
Journal of Nanjing University of Aeronautics & Astronautics
基金
中国空气动力研究与发展中心结冰与防除冰重点实验室开放课题(IADL20220202)
四川省自然科学基金面上项目(2023NSFSC0062)。
关键词
结冰
不确定性量化
本征正交分解
神经网络
icing
uncertainty quantification
proper orthogonal decomposition
neural network