摘要
针对现有工件圆度误差的不确定度评定国标方法不能兼顾简化计算和避免分布假设的问题,对以圆度误差评定为基础的不确定度评定新方法进行研究。首先,基于最小二乘拟合圆法进行误差评定。然后,利用最大熵原理结合粒子群算法求解圆度误差概率密度函数(PDF)的优化估值。最后,利用数值积分对圆度误差不确定度进行评定,并与测量不确定度表示指南(GUM)和蒙特卡罗法(MCM)进行对比验证。结果表明,PDF估计法可实现小样本数据、无分布假设下的圆度误差不确定度评定,算法收敛性好、估值稳定。
Aiming at the existing national standard method for uncertainty analysis of workpiece measurement error not to simplify calculation and avoid distribution hypothesis,a new method for evaluating uncertainty considering roundness error is studied.Firstly,the least squares fitting method is used to evaluate the error.Then,the optimal estimation of roundness error probability density function(PDF)is solved by using maximum entropy principle and particle swarm optimization(PSO).Finally,the roundness error uncertainty is evaluated by numerical integration and compared with the evaluation by GUM and Monte Carlo method(MCM).The results show that PDF estimation method can evaluate the roundness error uncertainty with small sample data and no distribution assumption,and the algorithm has good convergence and stable estimation.
作者
张珂
成果
阎卫增
Zhang Ke;Cheng Guo;Yan Weizeng(School of Mechanical Engineering,Shanghai Institute of Technology,Shanghai 201418,China;Shanghai Engineering Research Center of Physical Vapor Deposition Superhard Coating and Equipment,Shanghai Institute of Technology,Shanghai 201418,China;Shanghai C&U GmbH,Shanghai 201411,China)
出处
《机械科学与技术》
CSCD
北大核心
2020年第2期235-240,共6页
Mechanical Science and Technology for Aerospace Engineering
基金
上海市联盟计划项目(LM2018-5)
上海应用技术大学协同创新基金(XTCX2018-13).