期刊文献+

基于IPSO算法的短期电力负荷预测模型研究 被引量:4

Research on Short-Term Power Load Forecasting Model Based on IPSO Algorithm
下载PDF
导出
摘要 为有效减小短期电力负荷预测的预测误差,提高预测精度、缩短预测时间,应用改进粒子群优化(IPSO)算法建立了1种短期电力负荷预测模型。通过水平方向和垂直方向的平滑修正,对历史数据的异常负荷点进行识别并修正。利用相同日期类型正常负荷,计算缺失数据填充值。采用模糊化处理,计算日期类型、温度、天气隶属度函数,对短期负荷变化因素进行量化处理。将历史数据的负荷值和量化值作为训练数据。为避免粒子群优化(PSO)算法陷入局部最优,采用IPSO算法找到全局最优解,建立了短期负荷预测模型,实现了短期电力负荷预测。试验结果表明,所设计模型预测结果在休息日和工作日的最大相对误差值、平均相对误差值分别为0.97%、0.53%和0.99%、0.65%,能够有效减小预测误差、提高预测精度、缩短预测时间。该研究为电力系统相关人员进行负荷预测提供了参考。 A short-term power load forecasting model is developed by applying the improved particle swarm optimization(IPSO)algorithm to reduce forecasting error effectively,improve forecasting accuracy,and shorten forecasting time of the short-term power load forecasting.The abnormal load points of historical data are identified and corrected by smoothing correction in horizontal and vertical directions.Missing data fill values are calculated by using normal loads of the same date type.Fuzzification is used to calculate the date type,temperature,and weather affiliation functions to quantify the short-term load variation factors.Load values and quantized values of historical data are used as training data.To avoid the particle swarm optimization(PSO)algorithm from falling into local optimum,IPSO algorithm is used to find the global optimal solution,and a short-term load forecasting model is established to realize short-term electric load forecasting.The experimental results show that the maximum relative error value and the average relative error value of the prediction results of the designed model on rest day and work day are 0.97%,0.53%and 0.99%,0.65%,respectively,which can effectively reduce the forecasting error,improve the forecasting accuracy,and shorten the forecasting time.The study provides reference for load forecasting by the relevant personnel in the power system.
作者 王峰 WANG Feng(State Grid Nanjing Power Supply Company,Nanjing 210013,China)
出处 《自动化仪表》 CAS 2023年第4期22-26,共5页 Process Automation Instrumentation
关键词 改进粒子群优化算法 短期电力负荷 负荷预测 电力系统 异常负荷点 模糊化处理 隶属度函数 全局最优解 Improved particle swarm optimization(IPSO)algorithm Short-term power load Load forecasting Power system Abnormal load points Fuzzification process Subordination function Global optimal solution
  • 相关文献

参考文献11

二级参考文献104

共引文献375

同被引文献48

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部