摘要
Let X and Y be Banach spaces.For A∈L(X),B∈L(Y),C∈L(Y,X),let MCbe the operator matrix defined on X⊕Y by M_(C)=(AC0B)∈L(X⊕Y).In this paper we investigate the decomposability for MC.We consider Bishop’s property(β),decomposition property(δ)and Dunford’s property(C)and obtain the relationship of these properties between M_(C) and its entries.We explore how σ_(*)(M_(C))shrinks from σ_(*)(A)∪σ_(*)(B),where σ_(*)denotes σ_(β),σ_(δ),σ_(C),σ_(dec).In particular,we develop some sufficient conditions for equality σ_(*)(MC)=σ_(*)(A)∪σ_(*)(B).Besides,we consider the perturbation of these properties for MCand show that in perturbing with certain operators C the properties for MCkeeps with A,B.Some examples are given to illustrate our results.Furthermore,we study the decomposability for(0AB0).Finally,we give applications of decomposability for operator matrices.
基金
Supported by National Natural Science Foundation of China(Grant No.11761029)
Inner Mongolia Higher Education Science and Technology Research Project(Grant Nos.NJZY22323 and NJZY22324)
Inner Mongolia Natural Science Foundation(Grant No.2018MS07020)。