期刊文献+

On spectral theory of the Riemann zeta function 被引量:1

On spectral theory of the Riemann zeta function
原文传递
导出
摘要 Every nontrivial zero of the Riemann zeta function is associated as eigenvalue with an eigenfunction of the fundamental differential operator on a Hilbert-P′olya space. It has geometric multiplicity one. A relation between nontrivial zeros of the zeta function and eigenvalues of the convolution operator is given. It is an analogue of the Selberg transform in Selberg’s trace formula. Elements of the Hilbert-P′olya space are characterized by the Poisson summation formula. Every nontrivial zero of the Riemann zeta function is associated as eigenvalue with an eigenfunction of the fundamental differential operator on a Hilbert-P′olya space. It has geometric multiplicity one. A relation between nontrivial zeros of the zeta function and eigenvalues of the convolution operator is given. It is an analogue of the Selberg transform in Selberg’s trace formula. Elements of the Hilbert-P′olya space are characterized by the Poisson summation formula.
作者 Xian-Jin Li
出处 《Science China Mathematics》 SCIE CSCD 2019年第11期2317-2330,共14页 中国科学:数学(英文版)
关键词 Hilbert-Pólya space SPECTRUM of OPERATORS ZEROS of ZETA FUNCTION Hilbert-Pólya space spectrum of operators zeros of zeta function
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部