期刊文献+

基于单木位置特征的多源树木三维点云配准方法 被引量:4

Registration of Point Cloud from Different Platforms in Forested Area Based on Tree Position Features
下载PDF
导出
摘要 【目的】针对不同观测平台获得的树木三维点云特征少、重叠率低、配准较难的问题,以不同视角不同平台的森林点云数据为输入,根据单木平面位置分布一致性原则,提出一种适用于多类型数据的无标记森林点云自动配准方法,实现以单木对象为语义特征的点对匹配。【方法】首先从不同类型点云数据中分别提取单木平面位置:对于侧视型点云,基于点云主方向离散度与主方向竖直角度偏差剔除部分非主干点云,采用体素点云剖分的连通分量分割方法识别单木主干,统计单木主干点云体素垂直分布最大值点作为单木平面位置;对于俯视型点云,采用标记分水岭算法分割冠层高度模型,提取单木并识别冠层顶点作为单木平面位置。然后以提取的单木平面位置为特征点,基于Laplace谱图匹配理论获取配准矩阵,完成4自由度点云粗配准。最后,采用主干点云匹配完成侧视与侧视点云的精配准,采用全局点云最近点迭代法与主干点云匹配完成侧视与俯视点云的精配准。【结果】侧视-侧视点云配准精度优于侧视-俯视点云,侧视-侧视点云粗配准平均误差为0.24 m,精配准平均误差为0.08 m;侧视-俯视点云粗配准平均误差为1.07 m,全局点云最近点迭代法平均误差为0.44 m,机载激光点云与侧视点云经主干点云匹配后,平均误差为0.36 m。【结论】本研究立足于森林环境,借鉴由粗到精的配准思路,综合多种算法,提出一种适用于多源点云数据类型的配准方法,并通过试验证明了方法的可行性。基于单木位置特征的多源树木三维点云配准方法适用于森林、城市园林绿地等垂直生长结构较为明显的树木配准,可为森林资源调查与评估提供坐标统一、较为完整的高精度三维测量数据。 【Objective】The difficulties and the large registration error of the 3D point cloud registration in forested area present a challenge.Taking different types of forest point cloud data from different perspectives and platforms(groundbased and airborne)as input,and aiming at high-precision fusion of forest point cloud data,an automatic marker-less registration algorithm of point cloud for multi-types of data under forest semantic environment was proposed,focusing on point-pair matching with the single wood object as semantic feature.【Method】Firstly,according to the data characteristics of different types of point clouds,the tree positions are extracted respectively.For the side view(ground-based)point cloud,based on the deviation between the main direction dispersion and the vertical angle of the main direction of the point cloud,non-trunk point cloud is eliminated,and the connected component segmentation method of voxel-based partition is used to identify the trunk of individual tree,and the place with the maximum point density of voxel vertical distribution of the single tree trunk point cloud is determined as the planar position of the tree.For the top view(airborne)point cloud,the canopy height model(CHM)is extracted,and then the marker controlled watershed method is used to segment CHM to extract individual trees and the canopy vertex is identified as the planar position of individual trees.Then,taking the extracted positions of individual trees as feature points,the registration matrix is obtained based on Laplace spectral map matching theory, and the 4-DoF (degree of freedom) point cloud coarse registration is completed. Finally, the side view point clouds are precisely registered by using the main trunk matching and the side view and top view point clouds are precisely aligned by using the global iterative closest points ( ICP ) method . 【 Result】 The experimental result show that the registration accuracy between point cloud obtained from ground perspective views is better than that of ground si
作者 黄洪宇 骆钰波 唐丽玉 李肖肖 彭巍 陈崇成 Huang Hongyu;Luo Yubo;Tang Liyu;Li Xiaoxiao;Peng Wei;Chen Chongcheng(National Engineering Research Center of Geospatial Information Technology Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education,Fuzhou University Fuzhou 350108)
出处 《林业科学》 EI CAS CSCD 北大核心 2022年第11期96-107,共12页 Scientia Silvae Sinicae
基金 国家自然科学基金项目(41971344) 福建省科技计划项目(2020I0008)。
关键词 点云 配准 单木分割 特征提取 图匹配 point cloud registration tree segmentation feature extracting graph matching
  • 相关文献

参考文献6

二级参考文献75

共引文献180

同被引文献51

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部