期刊文献+

基于多种算法建立牡蛎及石决明的拉曼光谱鉴别模型 被引量:2

Identification Models of Raman Spectrum for Ostreae Concha and Haliotidis Concha Based on Multiple Algorithms
原文传递
导出
摘要 目的利用拉曼光谱建立多种算法的定性模型,用于贝壳类动物药牡蛎和石决明的鉴别分析。方法采集32批牡蛎和29批石决明共计366个样品的拉曼光谱,光谱在Matlab软件中作Savitzky-Golay平滑滤波、Scale Normalization for ImagePyramids基线校正、归一化预处理,并对全部及特征波段进行主成分分析降维。使用K最邻近法、决策树算法、判别分析法、集成学习法、支持向量机、人工神经网络6种分类算法建立鉴别模型,通过贝叶斯优化对前5种模型性能进行提升。结果预处理后拉曼信号峰明显,降维后牡蛎和石决明有聚类趋势。建立以200~310,670~740,1050~1100 cm^(-1)为特征波段的5种算法鉴别模型,相比于全波段模型,除集成学习法、支持向量机外,其他算法准确率均有一定的提高。贝叶斯优化后,有3种模型训练集准确率达到98%,测试集准确率达到100%。采用人工神经网络建模分类,训练集、验证集、测试集的正确率均达到100%,能够准确地区分牡蛎和石决明。结论基于多种算法或IP建立了牡蛎及石决明拉曼光谱鉴别模型,预测效果均较为理想,其中人工神经网络模型可实现牡蛎和石决明的百分百准确、快速鉴别。 OBJECTIVE To establish qualitative models of Raman spectroscopy for identification of shellfish animal drugs Ostreae Concha and Haliotidis Concha based on multiple algorithms.METHODS The Raman spectrograms of 366 samples from 32 batches of Ostreae Concha and 29 batches of Haliotidis Concha were collected respectively.The spectrograms were processed by Savitzky-Golay smoothing filter,Scale Normalization for Image Pyramids,and normalized preprocessing in Matlab.Principal component analysis was used to reduce dimension of full band and specific bands.Six classification algorithms including K-nearest neighbor,decision tree,discriminant analysis,ensemble learning,support vector machine and artificial neural network were used to establish the identification models,and the performance of the first five models was improved by Bayesian optimization.RESULTS The Raman signal peaks were obvious after preprocessing,and there was obvious clustering trend of Ostreae Concha and Haliotidis Concha after dimension reduction.Five algorithmic identification models with 200–310,670–740 and 1050–1100 cm^(-1)as characteristic bands were established.Compared with the full band model,the accuracy of all classifiers were improved except ensemble learning and support vector machines.After Bayesian optimization,the accuracy of three models achieved 98%in training set and 100%in test set.Using artificial neural network modeling for classification,the accuracy of training set,validation set and test set reached 100%,which could distinguish Ostreae Concha and Haliotidis Concha well.CONCLUSION Qualitative models of multiple algorithms by Raman spectroscopy for the identification of Ostreae Concha and Haliotidis Concha are established.The predictions of each model are satisfactory.Among them,the artificial neural network model can achieve 100%accurate and fast identification of Ostreae Concha and Haliotidis Concha.
作者 李君翔 倪琳 王亚飞 马寒露 宋平顺 杨平荣 王红球 LI Junxiang;NI Lin;WANG Yafei;MA Hanlu;SONG Pingshun;YANG Pingrong;WANG Hongqiu(School of Pharmacy,Lanzhou University,Lanzhou 730000,China;Gansu Provincial Institute of Drug Control/Key Laboratory of Quality Control of Chinese Medicinal Materials and Decoction Pieces of NMPA/Gansu Province Chinese and Tibetan Medicine Testing Engineering Technology Laboratory,Lanzhou 730000,China;JINSP Co.,Ltd.,Beijing 100081,China)
出处 《中国现代应用药学》 CAS CSCD 北大核心 2023年第4期477-482,共6页 Chinese Journal of Modern Applied Pharmacy
基金 中药材及饮片质量控制重点实验室项目(2021GSMPA-KL01,2021GSMPA-KL02)。
关键词 拉曼光谱 分类算法 鉴别模型 牡蛎 石决明 Raman spectroscopy classification algorithm identification model Ostreae Concha Haliotidis Concha
  • 相关文献

参考文献11

二级参考文献227

共引文献471

同被引文献49

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部