期刊文献+

基于D2-YOLO去模糊识别网络的果园障碍物检测 被引量:5

Orchard Obstacle Detection Based on D2-YOLO Deblurring Recognition Network
下载PDF
导出
摘要 针对果园目标检测时相机抖动以及物体相对运动导致检测图像模糊的问题,本文提出一种将DeblurGAN-v2去模糊网络和YOLOv5s目标检测网络相融合的D2-YOLO一阶段去模糊识别深度网络,用于检测识别果园模糊场景图像中的障碍物。为了减少融合网络的参数量并提升检测速度,首先将YOLOv5s骨干网络中的标准卷积替换成深度可分离卷积,并且在输出预测端使用CIoU_Loss进行边界框回归预测。融合网络使用改进的CSPDarknet作为骨干网络进行特征提取,将模糊图像恢复原始自然信息后,结合多尺度特征进行模型预测。为了验证本文方法的有效性,选取果园中7种常见的障碍物作为目标检测对象,在Pytorch深度学习框架上进行模型训练和测试。试验结果表明,本文提出的D2-YOLO去模糊识别网络准确率和召回率分别为91.33%和89.12%,与分步式DeblurGAN-v2+YOLOv5s相比提升1.36、2.7个百分点,与YOLOv5s相比分别提升9.54、9.99个百分点,能够满足果园机器人障碍物去模糊识别的准确性和实时性要求。 Aiming at the problem of camera shake and relative motion of objects leading to blurred detection images during target detection in orchards,a D2-YOLO one-stage deblurring recognition deep network that combined the DeblurGAN-v2 deblurring network and the YOLOv5s target detection network was proposed.It was used to detect and identify obstacles in orchard blurred scene images.To reduce the number of parameters of the fusion model and improve the detection speed,firstly the standard convolution used in the YOLOv5s backbone network with a deep separable convolution was replaced,then CIoU_Loss was used as the bounding box regression loss function of prediction.The fusion network used the improved CSPDarknet as the backbone for feature extraction.After recovering the original natural information of the blurred image,it combined multi-scale features for model prediction.To verify the effectiveness of the proposed method,seven common obstacles in the real orchard settings were selected as the target detection objects,based on the chassis of the crawler mobile robot,the BUNKER was equipped with portable computers,cameras and other equipment to form a mobile platform for image acquisition,and the model training and testing were carried out on the Pytorch deep learning framework.The precision and recall rates of the proposed D2-YOLO deblurring detection network were 91.33% and 89.12%,respectively,which were 1.36 percentage points and 2.7 percentage points higher than that of the step-by-step training DeblurGAN-v2+YOLOv5s.Compared with YOLOv5s,there was an increase of 9.54 percentage points and 9.99 percentage points in precision and recall rates,which can meet the accuracy and real-time requirements of orchard robot obstacle deblurring recognition.The research result can provide a reference for obstacle detection of agricultural robots in orchard in the later stage.
作者 蔡舒平 潘文浩 刘慧 曾潇 孙仲鸣 CAI Shuping;PAN Wenhao;LIU Hui;ZENG Xiao;SUN Zhongming(School of Electrical and Information Engineering,Jiangsu University,Zhenjiang 212013,China)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2023年第2期284-292,共9页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金项目(32171908) 江苏省现代农机装备与技术示范推广项目(NJ2021-14) 江苏高校优势学科项目(PAPD)。
关键词 果园机器人 障碍物检测 模糊图像 D2-YOLO 融合网络 agricultural robot in orchard obstacle detection blurred images D2 YOLO fusion network
  • 相关文献

参考文献18

二级参考文献208

共引文献332

同被引文献132

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部