期刊文献+

Prediction of film ratings based on domain adaptive transfer learning

下载PDF
导出
摘要 This paper examines the prediction of film ratings.Firstly,in the data feature engineering,feature construction is performed based on the original features of the film dataset.Secondly,the clustering algorithm is utilized to remove singular film samples,and feature selections are carried out.When solving the problem that film samples of the target domain are unlabelled,it is impossible to train a model and address the inconsistency in the feature dimension for film samples from the source domain.Therefore,the domain adaptive transfer learning model combined with dimensionality reduction algorithms is adopted in this paper.At the same time,in order to reduce the prediction error of models,the stacking ensemble learning model for regression is also used.Finally,through comparative experiments,the effectiveness of the proposed method is verified,which proves to be better predicting film ratings in the target domain.
作者 舒展 DUAN Yong SHU Zhan;DUAN Yong(School of Information Science and Engineering,Shenyang University of Technology,Shenyang 110870,P.R.China)
出处 《High Technology Letters》 EI CAS 2023年第1期98-104,共7页 高技术通讯(英文版)
基金 Supported by the Scientific Research Foundation of Liaoning Provincial Department of Education(No.LJKZ0139).
  • 相关文献

参考文献6

二级参考文献50

  • 1张振跃,查宏远.Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment[J].Journal of Shanghai University(English Edition),2004,8(4):406-424. 被引量:72
  • 2何国辉,甘俊英.二维主元分析在人脸识别中的应用研究[J].计算机工程与设计,2006,27(24):4667-4669. 被引量:22
  • 3ERTOZ L, STEINBACH M, KUMAR V. Finding clusters of different sizes, shapes and densities in noisy high-dimensional data[ R]. Minnesota: Department of Computer Science, University of Minnesota, 2002. 被引量:1
  • 4HAM J H, LEE D D, SAUL L K. Learning high-dimensional correspondences from low dimensional manifolds [ C ]//Proc of ICML Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining. Washington: [ s. n. ] , 2003:34-41. 被引量:1
  • 5KOHONEN T. Self-organization and associated memory [ M]. [ S. l. ]: Springer-Verlag, 1988. 被引量:1
  • 6KOHONEN T. Self-organizing maps [ M ]. New York: Spinger-Verlag, 2001. 被引量:1
  • 7MINKA T P. Automatic choice of dimensionality for PCA[ C ]//Proc of International Conference on Advances in Neural Information Processing Systems. Cambridge: [ s. n. ] , 2001:598-604. 被引量:1
  • 8GRIFFITHS T L, KALISH M L. A muhidimensional scaling approach to mental multiplication[ J ]. Memory & Cognition, 2002,30 ( 1 ) : 97-106. 被引量:1
  • 9CAMASTRA F, VINCIARELLI A. Estimating the intrinsic dimension of data with a fractal-based method [J].IEEE Trans on Pattern Anal Mach Intell, 2002,24(10) :1404-1407. 被引量:1
  • 10CAMASTRA F. Data dimension estimation methods: a survey[ J]. Pattern Recognition, 2003, 36:2945-2954. 被引量:1

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部