期刊文献+

仿分子动理学数据聚类法在基因表达数据上的应用 被引量:1

Applications of molecular-kinetic-theory-based clustering approach on gene expression data
下载PDF
导出
摘要 为了识别出可能具有诊断力的特征基因,常常使用聚类的方法对基因表达数据进行分析,而仿分子动理学聚类法通过仿效分子间的作用力机制能达到对数据聚类的目的。仿分子动理学聚类技术不需要预设簇个数,且可用于估计数据中的簇个数。该方法被应用于基因表达数据,结合相关指标用以估计数据中存在的簇个数和发现可能具有诊断力的特征基因。实验与分析结果显示了仿分子动理学聚类技术具有良好的知识挖掘能力。 In order to find possible diagnostic genes that may typically assist in disease diagnosis,clustering technologies are always used to analyze gene expression data.Molecular-kinetic-theory-based clustering approach is a new and effective clustering technique.It finds data clusters by following the molecular kinetic mechanism.This dynamic clustering approach does not require presetting the number of clusters and can be used to estimate the number of clusters.The authors applied the method on gene expression data to estimate the number of clusters and possible diagnostic genes according to relevant clustering criteria.The simulation results and analysis verify the good knowledge discovery ability of this approach.
出处 《计算机应用》 CSCD 北大核心 2011年第10期2774-2777,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61073099) 中央高校基本科研业务费专项资金资助项目(103.1.2 E022050205 ZYGX2009J058)
关键词 聚类 分子动理学 互作用力 基因表达 数据挖掘 知识发现 clustering molecular kinetics interaction gene expression data mining knowledge discovery
  • 相关文献

参考文献19

二级参考文献62

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2王银燕,余镇危,曹怀虎,潘耘.基于二度量的单播最短路径算法[J].计算机工程,2007,33(5):89-90. 被引量:3
  • 3ERTOZ L, STEINBACH M, KUMAR V. Finding clusters of different sizes, shapes and densities in noisy high-dimensional data[ R]. Minnesota: Department of Computer Science, University of Minnesota, 2002. 被引量:1
  • 4HAM J H, LEE D D, SAUL L K. Learning high-dimensional correspondences from low dimensional manifolds [ C ]//Proc of ICML Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining. Washington: [ s. n. ] , 2003:34-41. 被引量:1
  • 5KOHONEN T. Self-organization and associated memory [ M]. [ S. l. ]: Springer-Verlag, 1988. 被引量:1
  • 6KOHONEN T. Self-organizing maps [ M ]. New York: Spinger-Verlag, 2001. 被引量:1
  • 7MINKA T P. Automatic choice of dimensionality for PCA[ C ]//Proc of International Conference on Advances in Neural Information Processing Systems. Cambridge: [ s. n. ] , 2001:598-604. 被引量:1
  • 8GRIFFITHS T L, KALISH M L. A muhidimensional scaling approach to mental multiplication[ J ]. Memory & Cognition, 2002,30 ( 1 ) : 97-106. 被引量:1
  • 9CAMASTRA F, VINCIARELLI A. Estimating the intrinsic dimension of data with a fractal-based method [J].IEEE Trans on Pattern Anal Mach Intell, 2002,24(10) :1404-1407. 被引量:1
  • 10CAMASTRA F. Data dimension estimation methods: a survey[ J]. Pattern Recognition, 2003, 36:2945-2954. 被引量:1

共引文献1219

同被引文献19

  • 1袁远,季星来,孙之荣,李衍达.Isomap在基因表达谱数据聚类分析中的应用[J].清华大学学报(自然科学版),2004,44(9):1286-1289. 被引量:11
  • 2GOLUB T R,SLONIM D K,TAMAYO P,et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531-537. 被引量:1
  • 3ZHAO Yuhai,YU J X,WANG Guoren,et al.Maximal subspace coregulated gene clustering[J].IEEE Trans Knowl Data Eng,2008,20(1):83-98. 被引量:1
  • 4WIGLE D A,JURISICA I,RADULOVlCH N,et al.Molecular profiling of non-small cell lung cancer and correlation with disease-free survival[J],Cancer Res,2002,62(11):3005-3008. 被引量:1
  • 5DUDOIT S,FRIDLYAND J.A prediction-based resampling method for estimating the number of clusters in a dataset[J].Genome Biol,2002,3(7):0036.1-0036.21. 被引量:1
  • 6SMOLKIN M,GHOSH D.Cluster stability scores for microarray data in cancer studies[J].BMC Bioinformatics,2003,4:36. 被引量:1
  • 7MONTl S,TAMAYO P,MESIROV J,et al.Consensus clustering:a resamlping-based method for class discovery and visualization of gene expression microarray data[J].Mach Learn,2003,52(1-2):91-118. 被引量:1
  • 8HANDL J, KNOWLES J,KELL D B.Computationai cluster validation in post-genomic data analysis[J].Bioinformatics,2005,21(15):3201-3212. 被引量:1
  • 9BERTONI A,VALENTINI G.Randomized maps for assessing the reliability of patients clusters in DNA microarray data analyses[J].Artif Intell Med,2006,37(2):85-109. 被引量:1
  • 10YU Zhiwen,WONG H S,WANG Hongqiang.Graph-based consensus clustering for class discovery from gene expression data[J].Bioinformatics,2007,23(21):2888-2896. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部