摘要
深度伪造技术的迅速发展和广泛传播引起了社会的广泛关注,但深度伪造技术的恶意应用也给社会带来了潜在威胁。因此,如何检测出此类深度伪造内容成为热门研究课题。以往的多数深度伪造检测算法着重于捕捉像素级别的细微伪造痕迹。目前的深度伪造算法大多忽略了伪造前后的光照信息,导致原始人脸与伪造人脸之间存在一定的光照不一致性,这为使用光照不一致性来检测深度伪造提供了可能。从引入光照不一致性信息和为特定任务设计网络结构模块两个角度设计了对应的算法。针对光照的引入,通过设计对应的通道融合算法,将更多的光照不一致信息提供给网络特征提取层,从而衍生出新的网络结构。为了保证该网络结构的可移植性,将特征通道融合的过程置于网络提取信息之前,从而使所提算法能够完整移植至常见的深度伪造检测网络。针对网络结构的设计,从网络结构和损失函数设计两个角度出发,提出了基于块间相似性的光照不一致性深度伪造检测算法。对于网络结构,基于伪造图像篡改区域和背景区域不一致的特性,在网络特征层中对提取特征进行分块,通过对比块间余弦相似度得到特征层相似矩阵,使网络拟合重心更偏向于光照不一致性。在此基础上,基于特征层相似性对比方案,通过将输入图像与该图像的未篡改图像进行块间真伪性对比,为这一任务设计了独立的真实数据参考及损失函数。实验结果表明,与基线算法相比,所提算法对于深度伪造检测的准确性有明显提升。
The rapid development and widespread dissemination of deepfake techniques has caused increased concern.The malicious application of deepfake techniques also poses a potential threat to the society.Therefore,how to detect deepfake content has become a popular research topic.Most of the previous deepfake detection algorithms focused on capturing subtle forgery traces at pixel level and have achieved some results.However,most of the deepfake algorithms ignore the lighting information before and after generation,resulting in some lighting inconsistency between the original face and the forged face,which provided the possibility of using lighting inconsistency to detect deepfake.A corresponding algorithm was designed from two perspectives:introducing lighting inconsistency information and designing a network structure module for a specific task.For the introduction of lighting task,a new network structure was derived by designing the corresponding channel fusion method to provide more lighting inconsistency information to the network feature extraction layer.In order to ensure the portability of the network structure,the process of feature channel fusion was placed before the network extraction information,so that the proposed method can be fully planted to common deepfake detection networks.For the design of the network structure,a deepfake detection method was proposed for lighting inconsistency based on patch-similarity from two perspectives:network structure and loss function design.For the network structure,based on the characteristic of inconsistency between the forged image tampering region and the background region,the extracted features were chunked in the network feature layer and the feature layer similarity matrix was obtained by comparing the patch-wise cosine similarity to make the network focus more on the lighting inconsistency.On this basis,based on the feature layer similarity matching scheme,an independent ground truth and loss function was designed for this task in a targeted manner by comparing th
作者
吴文轩
周文柏
张卫明
俞能海
WU Wenxuan;ZHOU Wenbo;ZHANG Weiming;YU Nenghai(School of Cyber Science and Technology,University of Science and Technology of China,Hefei 230026,China)
出处
《网络与信息安全学报》
2023年第1期167-177,共11页
Chinese Journal of Network and Information Security
基金
国家自然科学基金(62002334,U20B2047,62121002)
安徽省自然科学基金(2008085QF296)
统筹推进世界一流大学和一流学科建设专项资金(YD3480002001)
中央高校基本科研业务费专项资金(WK2100000011)。