期刊文献+

2022年深度学习技术主要发展动向分析 被引量:3

Main Development Trends of Deep Learning Technology in 2022
下载PDF
导出
摘要 深度学习正逐渐成为新一代人工智能最核心的技术之一。对2022年深度学习热门领域的主要发展动向进行了综合评述。首先,介绍小数据小样本深度学习研究领域的最新进展;其次,探讨量子计算与深度学习的融合路径;然后,概述强化学习对通用智能的推动作用;最后,盘点深度学习在多模态学习方向的进展。综述表明,面向小数据、小样本的深度学习技术正在引领深度学习向自监督方向不断迈进,深度学习与其他先进计算范式(例如量子计算等)深入融合趋势愈发明显,强化学习在一定程度上具备解决复杂问题的通用智能,多模态深度学习技术已迎来关键性突破。 Deep Learning(DL)is gradually becoming one of the core technologies of the new generation of Artificial Intelligence(AI).This paper makes a comprehensive survey of the main development trends in the field of DL in 2022,and analyzes its further development directions.Firstly,this paper summarizes the latest progress in the field of small data and small sample DL;Secondly,the fusion path of quantum computing and DL is discussed;Thirdly,it summarizes the promotion of reinforcement learning(RL)on general intelligence;Finally,it reviews the progress of DL in multimodal learning.The survey shows that:DL technology for small data and small samples has leaded to self-supervision;The fusion trend of DL and other computing paradigms(e.g.,quantum computing etc.)is obvious;RL has general intelligence to some extent,to solve some complex problems;Multimodal deep learning has ushered in a key breakthrough.
作者 王亚珅 胡武陵 朱小伶 葛悦涛 WANG Yashen;HU Wuling;ZHU Xiaoling;GE Yuetao(Key Laboratory of Cognition and Intelligence Technology(CIT),Artificial Intelligence Institute of CETC,Beijing 100049,China;Beijing Yanshan Electronic Equipment Factory,Beijing 100192,China;National Engineering Laboratory for Risk Perception and Prevention(RPP),China Academy of Electronics and Information Technology,Beijing 100041,China;China Academy of Information and Communications Technology,Beijing 100191,China)
出处 《无人系统技术》 2023年第1期104-113,共10页 Unmanned Systems Technology
基金 国家自然科学基金(62106243,U19B2026,U19B2038)。
关键词 深度学习 小数据 量子计算 预训练 强化学习 多模态学习 Deep Learning Small Data Quantum Computing Pre-training Reinforcement Learning Multimodal Learning
  • 相关文献

参考文献4

二级参考文献5

共引文献83

同被引文献17

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部