期刊文献+

基于深度学习的多源数据自动分类算法设计 被引量:1

下载PDF
导出
摘要 为了降低由于数据特征差异引起的数据辨识分类结果精确度较低的问题,提出基于深度学习的多源数据自动分类算法设计。首先提取了不同数据域数据的特征,在最小化数据特征损失的基础上,采用深度学习的方法,对多源数据的特征进行分析,将分析结果作为数据分类的依据,实现数据的高精度分类。通过试验对其进行测试,结果表明,所提方法在不影响分类效率的前提下,分类精度可达到95%以上,具有良好的实际应用价值。
出处 《电脑知识与技术》 2022年第5期20-21,37,共3页 Computer Knowledge and Technology
  • 相关文献

参考文献8

二级参考文献36

共引文献63

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部