期刊文献+

基于SSAE-LSTM神经网络的风电变流器开路故障诊断 被引量:4

Wind power converter fault diagnosis based on SSAE-LSTM network
下载PDF
导出
摘要 针对风电变流器IGBT模块开路故障,在诊断中长时间序列信号的特征时难以提取和识别,文章提出了一种基于栈式稀疏自编码(SSAE)网络和长短期记忆(LSTM)神经网络的开路故障诊断方法。以网侧变流器为主要研究对象,首先,将预处理后的原始电流信号输入SSAE网络,利用无监督学习方式进行逐层贪婪训练,并结合有监督学习方式对SSAE网络进行参数更新和局部微调,进而提取隐含层降维特征,构建特征矩阵;其次,利用LSTM神经网络在处理时间序列中的记忆优势,将特征矩阵作为LSTM网络的输入进行模型的训练;最后,利用Softmax分类器实现故障的识别和分类。诊断结果表明,该方法实现了自动提取网侧变流器的故障电流信号特征;同时所提方法能够风电变流器IGBT模块单一开路和双开路的22种开路故障问题进行准确地识别和分类,平均测试集准确率可达99.64%。 Aiming at the problem of feature extraction and recognition of long-time series signals in the open circuit fault diagnosis of IGBT module of wind power converter,an open-circuit fault diagnosis method based on Stacked Sparse Auto-Encoder(SSAE)network and Long-Short Term Memory(LSTM)neural network is proposed which uses the grid-side converter as the main research object.Firstly,input the preprocessed original current signal into the SSAE network to use the unsupervised learning method to perform layer-by-layer greedy training,and then combine the supervised learning method to update the parameters and local fine-tuning of the SSAE network to extract the dimensionality reduction features of the hidden layer for constructing the feature matrix;Secondly,use the feature matrix as the input of the LSTM network to train the model by taking the advantages of the memory strengths of the LSTM neural network in processing time series;Finally,use the Softmax classifier to identify and classify faults.The diagnosis results show that the method realizes the automatic extraction of the fault current signal characteristics of the grid-side converter;At the same time,the proposed method can accurately identify and classify 22 fault problems of single open circuit and double open circuit of the IGBT module of the wind power converter and the average rate of the test set accuracy can reach 99.64%.
作者 张瑞成 白晓泽 董砚 邸志刚 孙鹤旭 张靖轩 Zhang Ruicheng;Bai Xiaoze;Dong Yan;Di Zhigang;Sun Hexu;Zhang Jingxuan(College of Electrical Engineering,North China University of Science and Technology,Tangshan 063210,China;School of Electrical Engineering,Hebei University of Technology,Tianjin 300310,China;School of Electrical Engineering,Hebei University of Science and Technology,Shijiazhuang 050018,China;Green Intelligent Mining Technology Innovation Center of Hebei Province,Tangshan 063210,China)
出处 《可再生能源》 CAS CSCD 北大核心 2023年第3期361-369,共9页 Renewable Energy Resources
基金 河北省重点研发计划项目(20314502D) 河北省教育厅科学技术研究项目(ZD2021332,JQN2020020,JQN2022001) 唐山市科技计划项目(21130219C)。
关键词 风电变流器 故障诊断 特征提取 栈式稀疏自编码 长短期记忆 wind power converter fault diagnosis feature extraction SSAE LSTM
  • 相关文献

参考文献11

二级参考文献132

  • 1杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:143
  • 2雷亚国,何正嘉,訾艳阳,胡桥.基于特征评估和神经网络的机械故障诊断模型[J].西安交通大学学报,2006,40(5):558-562. 被引量:39
  • 3Eduard Muljadi, Butterfield C P, Brian Parsons, et al. Effect of variable speed wind turbine generator on stability of a weak grid[J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 29-36. 被引量:1
  • 4Johan Ribrant, Lina Margareta Bertling. Survey of failures in wind power systems with focus on swedish wind power lants during 1997-2005[J]. IEEE Transac- tions on Energy Conversion, 2007, 22(1): 167-173. 被引量:1
  • 5Yang W, Tavner P J, Wilkinson M R. Condition monitoring and fault diagnosis of a wind turbine synchronous generator drive train[J]. IET Renewable Power Generation, 2009, 3(1): 1-11. 被引量:1
  • 6Estima J O, Fernandes J L J, Cardoso A J M. Faulty operation analysis of permanent magnet synchronous generator drives for wind turbine applications[C]. 5th IET International Conference on Power Electronics, Machines and Drives, 2010: 1-6. 被引量:1
  • 7Mendes A M S, Cardoso A J M, Saraiva E S. Voltage source inverter fault diagnosis in variable speed AC drives, by Park's vector approach[C]. Seventh Interna- tional Conference on Power Electronics and Variable Speed Drives, 1998: 538-543. 被引量:1
  • 8Ribeiro R L A, Jacobina C B, Silva E R C, et al. Fault detection of open-switch damage in voltage-fed PWM motor drive systems[J]. IEEE Transactions on Power Electronics, 2003, 18(2): 587-593. 被引量:1
  • 9Caseiro J A A, Mendes A M S, Cardoso A J M. Fault diagnosis on a PWM rectifier AC drive system with fault tolerance using the average current Park’s vector approach[C]. IEEE Electric Machines and Drives Conference, 2009: 695-701. 被引量:1
  • 10Sleszynski W, Nieznanski J, Cichowski A. Open- transistor fault diagnostics in voltage-source inverters by analyzing the load currents[J]. IEEE Transactions on Industrial Electronics, 2009, 56(11): 4681-4688. 被引量:1

共引文献167

同被引文献48

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部