摘要
为研究超大直径泥水平衡盾构穿越断层破碎带施工技术,以深圳某隧道工程为依托,对超大直径泥水平衡盾构穿越断层破碎带工程特点及难点进行分析,重点分析了泥水平衡盾构掘进过程中滞排、结泥饼、刀具磨损严重等问题产生的原因,并研究了泥水平衡盾构穿越断层破碎带的关键技术。针对滞排、结泥饼问题,在盾构机选型阶段优化刀盘结构设计,并采用大格栅+双破碎机排渣破碎系统、气垫直排式及主机段小循环模式等针对性措施,提高泥浆携渣能力、输送能力,降低渣土滞排和结泥饼的风险;针对刀具磨损严重问题,提出强化刀具状态监测及“逢红必检、有损必换”、杜绝刀具“带病作业”的刀具管理方针,确保刀具状态监测的可靠性和准确性,提高刀具使用寿命;最后,结合现场实践总结出“预防为主、防治结合、综合治理”的施工原则,采取辅助气压掘进模式穿越断层破碎带;通过对施工过程的研究分析,得到盾构掘进参数、泥水参数建议值以及各项针对性解决措施。
Based on a tunnel project in Shenzhen, this study is to investigate the construction technologies for slurry balance shields with super-large diameter through faulted fracture zones. The study analyzes the engineering characteristics and challenges of slurry balance shields with super-large diameter through faulted fracture zone, with a focus on the causes of different problems, such as clogging discharge, caking and serious tool wear during the boring process of the slurry balance shield, and investigates the key technologies for slurry balance shields through faulted fracture zones. To address the problems of clogging discharge and caking, the study optimizes the design of the cutter head structure during the selection phase of the shield machine, and adopts targeted measures, such as large grating plus crushing system with double crushers to discharge slags, small circulation mode with air-cushioned direct discharge at the host section, to improve the slag carrying capacity and conveying capacity of the slurry and reduce the risk of clogging discharge and caking. In view of the serious problem of tool wear, this study puts forward the tool management guideline of strengthening monitoring over the tool conditions, "inspecting upon warning and replacing a tool with any damage", and eliminating "working with problems", with the objectives to ensure the reliability and accuracy of tool condition monitoring and improve the life of tools. Finally, this paper summarizes the construction principles of "early prevention with control and comprehensive management of problems" through field practice, and adopts the supportive pneumatic tunnelling mode to cross the faulted fracture zone. Through the study and analysis of the construction process, this study deduces the recommended values of shield tunnelling parameters and slurry parameters and different targeted solutions.
作者
刘智
钟长平
LIU Zhi;ZHONG Changping(Guangzhou Mass Transit Engineering Consultant Co.,Ltd.,Guangzhou 510010;.2.Guangzhou Metro Group Co,Ltd.,Guangzhou 510380)
出处
《现代隧道技术》
CSCD
北大核心
2023年第1期225-232,共8页
Modern Tunnelling Technology
关键词
超大直径盾构
断层破碎带
泥水平衡盾构
施工技术
Shield with super-large diameter
Faulted fracture zone
Slurry balance shield
Construction technology