摘要
本文基于Hill动力学与Michaelis-Menten方程,建立理论模型研究时滞与噪声影响Notch信号通路动力学.研究发现,her1、her7基因转录的时滞性在很大程度上调控着Notch信号通路的动力学行为.由于时滞性的调控,Notch系统动力学经历Hopf分岔,由稳态转变为周期演化特性.通过考察Notch信号通路的噪声效应,我们发现,由于噪声的扰动,Notch系统周期振荡动力学改变.在较小噪声幅值条件下,Notch信号通路中改变的周期节律性可以通过时滞得以平衡恢复,由此表明了her1、her7转录的时滞性促进了Notch信号通路的周期振荡.对于较强噪声环境,时滞效应很难改变Notch信号的巨大突变,其信号通路动力学行为被噪声影响.理论结果符合实验,并揭示了时滞与噪声对Notch信号通路动力学的一种调控机制,可为设计阻止Notch功能异常导致的多种疾病和癌症的通路治疗方案提供理论依据.
In this paper,based on Hill kinetics and Michaelis-Menten equation,we built a theoretical model to study the influence of time delay and noise on Notch signal path dynamics.We found that in the time delay of Her1 and Her7 gene transcription regulates the dynamics of the Notch signaling pathway to a large extent.Due to the time delay regulation,the Notch system dynamics undergoes Hopf bifurcation.The steady state is transformed into a periodic evolution characteristic.By investigating the noise effect of the Notch signal path,we also found that the periodic oscillation dynamics of the Notch system changes due to the disturbance of the noise.Under the condition of low noise amplitude,the altered periodic rhythm in the Notch signaling pathway can be balanced and restored by time delay,which shows that the time delay of Her1 and Her7 transcription promotes the periodic oscillation of the Notch signaling pathway.In a strong noise environment,it is difficult for the time delay to regulate the change of Notch signal,and its signal path dynamics is largely affected by noise.The theoretical results are consistent with the experimental ones,and further reveal a regulatory mechanism of time delay and noise on the dynamics of the Notch signaling pathway,which can provide a theoretical basis for the design of pathway treatments to prevent various diseases and cancers caused by Notch dysfunction.
作者
苏瑞
赵新军
SU Rui;ZHAO Xin-Jun(Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics,College of Physical Science and Technology,Yi Li Normal University,Yining 835000,China;Laboratory of Micro-Nano Electro Biosensors and Bionic Devices,Yi Li Normal University,Yining 835000,China)
出处
《原子与分子物理学报》
CAS
北大核心
2023年第2期121-130,共10页
Journal of Atomic and Molecular Physics
基金
国家自然科学基金(22163011)
伊犁师范大学校级一般项目(2021YSYB100)。