期刊文献+

Robust N−k Security-constrained Optimal Power Flow Incorporating Preventive and Corrective Generation Dispatch to Improve Power System Reliability

原文传递
导出
摘要 As extreme weather events have become more frequent in recent years,improving the resilience and reliability of power systems has become an important area of concern.In this paper,a robust preventive-corrective security-constrained optimal power flow(RO-PCSCOPF)model is proposed to improve power system reliability under N−k outages.Both the short-term emergency limit(STL)and the long-term operating limit(LTL)of the post-contingency power flow on the branch are considered.Compared with the existing robust corrective SCOPF model that only considers STL or LTL,the proposed ROPCSCOPF model can achieve a more reliable generation dispatch solution.In addition,this paper also summarizes and compares the solution methods for solving the N−k SCOPF problem.The computational efficiency of the classical Benders decomposition(BD)method,robust optimization(RO)method,and line outage distribution factor(LODF)method are investigated on the IEEE 24-bus Reliability Test System and 118-bus system.Simulation results show that the BD method has the worst computation performance.The RO method and the LODF method have comparable performance.However,the LODF method can only be used for the preventive SCOPF and not for the corrective SCOPF.The RO method can be used for both.
出处 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第1期351-364,共14页 中国电机工程学会电力与能源系统学报(英文)
基金 This work was supported by the Education Department of Guangdong Province:New and Integrated Energy System Theory and Technology Research Group(No.2016KCXTD022) National Natural Science Foundation of China(No.51907031) Guangdong Basic and Applied Basic Research Foundation(Guangdong-Guangxi Joint Foundation)(No.2021A1515410009) China Scholarship Council Brunel University London BRIEF Funding。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部