期刊文献+

新冠疫情及建成环境对公交客流量的影响模型 被引量:3

Impact Model of COVID-19 and Built Environment on Bus Passenger Flow
下载PDF
导出
摘要 为揭示新冠疫情背景下公交客流量变化的空间影响因素,以疫情前后公交站点层面客流变化量为因变量,以建成环境、病毒感染情况及病毒传播途径等指标为自变量,构建新冠疫情与建成环境对公交客流量共同影响的线性回归(Ordinary Least Squares,OLS)模型与梯度提升回归树(Gradient Boosting Regression Trees,GBRT)模型。以广州市为实证对象,基于公交IC卡数据、兴趣点数据(Point of Interest,POI)及道路网络数据等多源异构数据进行模型实证分析。结果表明:考虑非线性效应的GBRT模型比OLS模型具有更好的拟合度;同时,常规公交站点的公交线路数量(22.02%)和到市中心距离(13.56%)是影响疫情背景下公交客流量变化的最重要因素,片区病毒感染与传播情况对疫情防控常态化时期的公交客流量作用有限,居民日常公交出行已经从疫情的影响下逐渐恢复。 In this study,the factors of COVID-19 and the built environment are used to examine variations in bus passenger flow.The study aims to reveal the influencing mechanism of bus passenger flow in the context of epidemic prevention and control,thereby providing strategic support for the quick recovery of bus passenger flow in the postepidemic period.This study focuses on Guangzhou City,and the data are collected from the bus IC card,point of interest(POI),and road network.The ordinary least squares(OLS)model and gradient boosting regression tree model(GBRT)are constructed to analyze the passenger flow of bus stops.The results show that the fitness of the GBRT model,which takes into account nonlinear effects,is superior to that of the OLS model.The key factors influencing changes in bus passenger flow during the epidemic period are the number of bus lines(which accounts for 22.02%)and the distance to the city center(which accounts for 13.56%).The findings indicate that the impact of COVID-19 on bus passenger flow is not crucial.With the normalization of epidemic prevention and control,people’s demand for bus travel is recovering.
作者 傅志妍 高于越 陈坚 陈琦 FU Zhi-yan;GAO Yu-yue;CHEN Jian;CHEN Qi(School of Traffic&Transportation,Chongqing Jiaotong University,Chongqing 400074,China;School of Economics and Business Administration,Chongqing University of Education,Chongqing 400067;Chongqing Transportation Planning and Research Institute,Chongqing 400074,China;Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies,Southeast University,Nanjing 211189,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2023年第1期207-215,共9页 Journal of Transportation Systems Engineering and Information Technology
基金 重庆市教育委员会科学技术研究计划项目(KJQN202001611,KJZD-K202100706) 四川省科技项目(2022YFH0016)。
关键词 城市交通 非线性效应 梯度提升回归树 公交客流 新冠疫情 urban traffic nonlinear effect gradient boosting regression trees passenger flow COVID-19
  • 相关文献

参考文献3

二级参考文献44

共引文献31

同被引文献33

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部