期刊文献+

诊疗人工智能的医疗损害责任 被引量:33

Medical Malpractice Liabilities of Artificial Intelligence in Medical Diagnoses
原文传递
导出
摘要 与自动驾驶汽车等替代型人工智能应用不同,诊疗人工智能仅为医务人员提供辅助作用,这使其背后的人机关系以及责任承担具有特殊性。诊疗人工智能并未改变现有医患关系结构,但人机协作诊疗模式加剧了医务人员诊疗过失的认定难度。诊疗活动的伦理属性与技术特点决定了诊疗人工智能的辅助定位,应当挖掘当时医疗水平标准背后的合理医生标准,赋予医务人员自由裁量权,同时配置适当的再判断义务,确保机器判断的益处被安全采纳。诊疗人工智能的辅助定位并未消除医疗产品责任的适用空间:在缺陷判断上,脱胎于理性人标准的理性算法标准可以一定程度缓解设计缺陷的认定困境,而对于专业中间人规则带来的警示缺陷证明难题,宜通过强化医务人员的特殊告知义务解决;在因果关系要件上,诊疗人工智能的辅助定位使得事实因果关系与法律因果关系的认定都面临特殊困难,可通过NESS标准以及替代原因理论予以补正。 Different from alternative AI applications such as autonomous vehicles,artificial intelligence in medical diagnoses only provides assistance to medical personnel,which makes the man-machine relationship and the assumption of liabilities special.Artificial intelligence in medical diagnoses has not changed the existing doctor-patient relationship structure,but the man-machine collaborative diagnosis model has intensified the difficulty in identifying medical personnel's malpractice.The ethical attributes and technical characteristics of medical diagnoses determine the auxiliary positioning of artificial intelligence in medical diagnoses.It is necessary to explore the reasonable doctor standard according to the medical level at that time,grant medical personnel discretion,and allocate appropriate re-judgment obligations to ensure that the benefits of machine judgment are safely adopted.The auxiliary positioning of artificial intelligence in medical diagnoses does not eliminate the application space of medical product liability.In terms of defect judgment,the reasonable algorithm standard can alleviate the identification dilemma of design defects to a certain extent,while the proof problem of warning defects caused by the learned intermediary rules should be solved by strengthening the special notification obligation of medical personnel.In terms of causality elements,the auxiliary positioning of artificial intelligence in medical diagnoses makes the identification of factual causality and legal causality face special difficulties,which can be corrected through NESS standard and alternative cause theory.
作者 郑志峰 Zheng Zhifeng
出处 《中国法学》 CSSCI 北大核心 2023年第1期203-221,共19页 China Legal Science
基金 2020年度国家社科基金青年项目“人工智能与《民法典》双重背景下个人信息保护研究”(项目批准号:20CFX041)的阶段性成果。
  • 相关文献

参考文献27

二级参考文献389

共引文献649

同被引文献612

引证文献33

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部