期刊文献+

基于AP-ELM地铁转向架轴承系统故障诊断方法

Fault diagnosis method of metro bogie bearing system based on AP-ELM
下载PDF
导出
摘要 地铁转向架轴承系统出现故障将会严重影响列车的安全运行。针对于极限学习机(Extreme Learning Machine,ELM)的不足,提出基于粒子群优化(Particle Swarm Optimization,PSO)算法的自编码ELM(Auto-encoder-PSO-ELM,AP-ELM)算法。首先构建多个结构相同的自编码器,将自编码器训练好后,对每个自编码器初始化权重,然后通过PSO算法优化权重,优化完成后将其与ELM算法融合。该方法被用于西储大学公共轴承故障试验台和地铁转向架轴承系统试验台中验证,并与ELM算法和单层自编码ELM算法对比。结果表明:AP-ELM算法在2个数据集中的分类效果均优于另外2种算法,验证了AP-ELM的有效性与优越性。 The failure of metro bogie bearing system will seriously affect the safe operation of the metro.Aiming at the deficiency of Extreme Learning Machine(ELM),an auto-encoding ELM algorithm based on Particle swarm optimization(AP-ELM)was proposed.Firstly,several auto-encoders with the same structure were constructed.After the auto-encoder was trained,the weight of each auto-encoder was initialized.Then,the weight was optimized by Particle Swarm Optimization(PSO)algorithm.After the optimization,it was fused with ELM algorithm.The proposed method was used in the public bearing fault data set of Western Reserve University and the test-bed of metro bogie bearing system.Compared with ELM algorithm and single auto-encoder ELM algorithm,the results show that the classification effect of AP-ELM method in two datasets is better than the other two algorithms,which verifies the effectiveness and superiority of AP-ELM.
作者 吴宝存 WU Baocun(Tianjin Binhai New Area Rail Transit Investment Development Company,Tianjin 300450,China)
出处 《现代制造工程》 CSCD 北大核心 2023年第1期122-126,共5页 Modern Manufacturing Engineering
关键词 故障诊断 极限学习机 自编码 粒子群优化 fault diagnosis Extreme Learning Machine(ELM) auto-encoder Particle Swarm Optimization(PSO)
  • 相关文献

参考文献9

二级参考文献68

  • 1王延飞,曹宏发,靳明旭.交流传动电力机车采用轴控的必要性[J].铁道机车车辆,2006,26(4):29-31. 被引量:5
  • 2Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]//Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on. IEEE, 2004, 2: 985-990. 被引量:1
  • 3Suresh S, Venkatesh Babu R, Kim H J. No-reference image quality assessment using modified extreme learning machine classifier.[J]. Appl. Soft Comput, 2009, 9(2):541-552. 被引量:1
  • 4Suresh S, Saraswathi S, Sundararajan N. Performance enhancement of extreme learning machine for multi- category sparse data classification problems[J]. Engineering Applications of Artificial Intelligence, 2010, 23(7):1149-1157. 被引量:1
  • 5Randall R B,Antoni J. Rolling element bearing diagnos-tics-A tutorial [ J ]. Mechanical Systems and Signal Pro-cessing, 2011,25(2) : 485 -520. 被引量:1
  • 6Raik o T, Ilin A, Karhunen J. Principal component analysisfor sparse high-dimensional data [ M ]. Neural InformationProcessing. Berlin : Springer-Verlag, 2008:566 - 575. 被引量:1
  • 7Jian A K, Dubes R C. Algorithms for clustering data[M ]. Englewood Cliffs, New Jersey : Prentice-Hall, 1988 :432 -436. 被引量:1
  • 8Liu H,Motoda H. Feature selection for knowledge dis-covery and data mining [ M ]. Boston : Kluwer AcademicPublishers, 1998:71 -76. 被引量:1
  • 9Liu H, Yu L. Toward integrating feature selection algo-rithms for classification and clustering [ J]. IEEE Trans-actions on Knowledge and Data Engineering, 2005,17(4): 491 -502. 被引量:1
  • 10雷秀娟,史忠科,孙瑰琪.基于遗传算子的粒子群优化算法的比较分析[J].计算机工程与应用,2008,44(14):65-66. 被引量:10

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部