期刊文献+

路用盐岩抗压强度特性评价及预测研究

Evaluation and Prediction of Compressive Strength of Salt Rock in Road Engineering
原文传递
导出
摘要 为提升罗布泊地区盐岩在公路工程中的资源化综合应用水平,有效评估盐岩作为筑路材料的适用性,系统研究初始含卤水率、初始干密度、烘干干密度等因素影响下盐岩抗压强度变化规律,并建立基于粒子群优化支持向量机的盐岩抗压强度预测模型。结果表明:当初始干密度在1.65 g/cm^(3)时盐岩抗压强度随初始含卤水率增大而增大,且盐岩抗压强度与烘干干密度存在线性增长关系;控制烘干干密度为1.65 g/cm^(3)时随着初始含卤水率增加抗压强度先增大后减小;当初始含卤水率确定时盐岩抗压强度随烘干干密度增大而增大;与传统神经网络和支持向量机预测结果相比,粒子群优化支持向量机的预测模型具有较高的预测精度,可实现对盐岩抗压强度的准确预测。 To improve the comprehensive application level of salt rock in road engineering in Lop Nur area, and effectively evaluate the applicability of salt rock as road construction material, the variation of compressive strength of salt rock under the influence of initial brine content, initial drying density and final drying density are systematically studied, and the prediction model of compressive strength of salt rock based on particle swarm optimized support vector machine is established. The results show that the compressive strength of salt rock increases with the increase of initial brine content when the initial dry density is 1.65 g/cm^(3), and there is a linear relationship between the compressive strength of salt rock and the final drying density. When the final drying density is 1.65 g/cm^(3), the compressive strength increases first and then decreases with the increase of initial brine content. When the initial brine content is determined, the compressive strength of salt rock increases with the increase of drying density. Compared with the prediction results of traditional neural network and support vector machine, the prediction model based on particle swarm optimized support vector machine has higher prediction accuracy, which can realize the accurate prediction of the compressive strength of salt rock.
作者 宋亮 王朝辉 牛亮亮 奚鹤 SONG Liang;WANG Chao-hui;NIU Liang-liang;XI He(Xinjiang Transportation Planning,Survey and Design Institute Co.Ltd.,Urumqi 830006,China;Xinjiang Naba Highway Development Co.Ltd.,Korla 841003,China;College of Transportation Engineering,Tongji University,Shanghai 201804,China;School of Highway,Chang'an University,Xi'an 710064,China)
出处 《公路》 北大核心 2022年第12期34-40,共7页 Highway
基金 新疆维吾尔自治区自然科学基金项目,项目编号2020-D01-A92 交通运输部重点科技项目,项目编号2019-MS1-024 中国博士后科学基金项目,2020M683709XB 新疆维吾尔自治区交通运输行业科技项目,项目编号2019-ZD1-015。
关键词 道路工程 盐岩 无侧限抗压强度 支持向量机 粒子群优化 road engineering salt rock unconfined compressive strength support vector machine particle swarm optimization
  • 相关文献

参考文献16

二级参考文献159

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部