摘要
为满足5G网络时代下各类应用场景的业务需求,设计面向5G网络的移动边缘计算节点部署算法。分析包含网络能力和平台能力的面向5G网络的移动边缘计算网络架构,其内移动边缘计算平台采用基于信道信息的克隆节点识别方法提升移动边缘计算节点安全性,在此基础上,将业务属性、无线站点、机房资源视图与业务需求相结合,获得移动边缘计算节点可能部署位置,利用改进遗传模拟退火算法部署节点所构成网络的虚拟网络功能,实现面向5G网络的移动边缘计算节点部署。实验结果表明,上述算法能有效避免克隆节点攻击,各移动边缘计算应用案例的不同特征均呈现出优良状态,且节点部署所构建网络的服务请求端到端时延随通用服务节点数量增加可降低75%左右。
In order to meet the business requirements of various application scenarios in the 5G network era, a mobile edge computing node deployment algorithm for 5G network is designed. The 5G network-oriented mobile edge computing network architecture including network capability and platform capability is analyzed. The internal mobile edge computing platform adopts the clonal node identification method based on channel information to improve the security of mobile edge computing nodes. On this basis, the service attributes, wireless sites and computer room resource views are combined with the service requirements. The possible deployment location of mobile edge computing nodes is obtained, and the virtual network function of the network composed of nodes is deployed by using the improved genetic simulated annealing algorithm to realize the deployment of mobile edge computing nodes for 5G network. The experimental results show that the algorithm can effectively avoid clone node attacks, the different characteristics of each mobile edge computing application case show a good state, and the end-to-end delay of service requests in the network constructed by node deployment can be reduced by about 75% with the increase of the number of general service nodes.
作者
刘春林
秦进
LIU Chun-lin;QIN Jin(School of Big Data Engineering,Kaili University,Kaili Guizhou 556011,China;School of Computer Science and Technology,Guizhou University,Guiyang Guizhou 550025,China)
出处
《计算机仿真》
北大核心
2022年第12期436-439,473,共5页
Computer Simulation
基金
贵州省科学技术基金,黔科合基础[2020]1Y275。
关键词
移动边缘计算
节点部署
克隆节点
遗传模拟退火
虚拟网络功能
Moving edge calculation
Node deployment
Clone nodes
Genetic simulated annealing
Virtual network function