期刊文献+

人工智能在肺癌筛查中的研究进展 被引量:8

Research Progress of Artificial Intelligence in Lung Cancer Screening
下载PDF
导出
摘要 肺癌发病率和死亡率居恶性肿瘤之首,严重危害人类健康,开展肺癌筛查至关重要。近年来,随着人工智能技术的快速发展,其在肺癌的检出、诊断等方面的研究取得一定的成果。本文将从肺癌筛查的意义、国内外肺癌筛查现状、人工智能技术概况及在肺癌筛查中的研究现状等方面进行综述。 The incidence and mortality of lung cancer is listed as the top of all the malignancies, which seriously threatens the public health. Lung cancer screening is essential. In recent years, with the rapid development of artificial intelligence, some achievements have been made in the detection and diagnosis of lung cancer. This article reviews the significance of lung cancer screening, screening status in the world, the development of artificial intelligence and research progress in lung cancer screening.
作者 刘甜 范丽 LIU Tian;FAN Li(Department of Radiology,Changzheng Hospital,Naval Medical University)
出处 《中国医学计算机成像杂志》 CSCD 北大核心 2022年第6期681-684,共4页 Chinese Computed Medical Imaging
基金 国家自然科学基金(81871321,81930049,82171926) 科技部重点研发计划(2022YFC2010002,2022YFC2010000) 上海市科学技术委员会计划项目(21DZ2202600) 上海长征医院2020年度院创新型临床研究项目(2020YLCYJ-Y24)。
关键词 肺肿瘤 筛查 人工智能 医学影像 Lung neoplasms Screening Artificial intelligence Medical imaging
  • 相关文献

参考文献13

二级参考文献108

  • 1刘士远.肺内非实性结节的临床处理现状堪忧[J].肿瘤影像学,2013,22(4):288-291. 被引量:4
  • 2王晓华,陈卉,马大庆,高培毅,周新华.人工神经网络在孤立性肺结节CT诊断研究中的应用[J].中华放射学杂志,2006,40(4):377-382. 被引量:21
  • 3Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J].CA Cancer J Clin,2015,65:87-108. 被引量:1
  • 4Bogoni L, Ko JP, Alpert J, et al. Impact of a computer-aided detec-tion (CAD) system integrated into a picture archiving and communi-cation system (PACS) on reader sensitivity and efficiency for thedetection of lung nodules in thoracic CT exams [J]. J Digit Imaging,2012,25:771-781. 被引量:1
  • 5Fabel M, Wulff A, Heckel F,et al. Clinical lymph node staging--in-fluence of slice thickness and reconstruction kernel on volumetryand RECIST measurements[J]. Eur J Radiol,2012 ,81:3124-3130. 被引量:1
  • 6Wielpiitz MO, Wroblewski J, Lederlin M,et al. Computer-aided de-tection of artificial pulmonary nodules using an ex vivo lung phan-tom: influence of exposure parameters and iterative reconstruction[J]. Eur J Radiol, 2015,84:1005-1011. 被引量:1
  • 7Hein PA, Rogalla P,KIessen C,et al. Computer -aided pulmonarynodule detection - performance of two CAD systems at different CTdose levels[J]. Rofo, 2009,181:1056-1064. 被引量:1
  • 8El-Baz A, Beache GM, Gimel * Farb G, et al. Computer-aided diag-nosis systems for lung cancer: challenges and methodologies[J]. Int JBiomed Imaging, 2013, 2013:942353. 被引量:1
  • 9Bram YG, Schaefer-Prokop CM, Mathias P. Computer-aided diag-nosis: how to move from the laboratory to the clinic[J]. Radiology,2011,261:719-732. 被引量:1
  • 10Jacobs C, van Rikxoort EM, Scholten ET, et al. Solid, part-solid, ornon -solid: classification of pulmonary nodules in low -dose chestcomputed tomography by a computer-aided diagnosis system[J], In-vest Radiol, 2015, 50: 168-173. 被引量:1

共引文献3635

同被引文献76

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部