摘要
利用广州市2015—2021年的地面观测资料和ERA5再分析数据集,统计了臭氧和PM_(2.5)的时间分布特征及两者同时出现高值(“双高”过程)的气象成因,并进一步用自组织神经网络(SOM)研究了高浓度臭氧和PM_(2.5)(浓度大于年第85分位数)对应的客观天气型.结果表明,2015—2021年,广州市臭氧浓度呈逐年上升趋势,而PM_(2.5)浓度则呈逐年下降趋势,臭氧逐渐取代PM_(2.5)成为首要污染物.“双高”日主要集中在春季和秋季,且秋季占比超过50%.当温度为20~30℃,湿度为30%~50%时,“双高”日出现的概率达到30%以上.基于天气分型方法,本研究发现在所有“双高”污染过程中,主要天气分型依次为:高压底后部型、变性高压脊型、副高+台风外围型、冷锋前部型;秋季发生“双高”污染时,天气分型依次为:副高+台风外围型和副高+弱冷高压脊型.
In this paper,based on the ground observation data and ERA5 reanalysis data set from 2015 to 2021 in Guangzhou,the temporal characteristics of ozone and PM_(2.5)and the meteorological causes of the high value(“double high”process)of both are statistically analyzed,and the objective weather patterns corresponding to the high concentration of ozone and PM_(2.5)(greater than the 85th quantile)are further studied through the self-organizing neural network(SOM).The concentration of ozone is increasing year by year,while the concentration of PM_(2.5)is decreasing.Ozone gradually replaced PM_(2.5)as the primary pollutant.“Double high”days are mainly concentrated in spring and autumn,with autumn accounting for more than 50%.When the temperature falls in the range of 20~30℃,and the humidity falls in 30%~50%,the probability of“double high”days is higher than 30%.Results based on SOM show that,when“double high”pollution occurs,the weather types are:high pressure bottom rear,transformed cold high ridge,subtropical high+typhoon periphery and front of cold front;When“double high”pollution occurs in autumn,the weather types are:subtropical high+typhoon periphery and subtropical high+weak cold high ridge.
作者
刘南希
何成
刘晨曦
何国文
王一鸣
王浩霖
曹梅
卢骁
范绍佳
LIU Nanxi;HE Cheng;LIU Chenxi;HE Guowen;WANG Yiming;WANG Haolin;CAO Mei;LU Xiao;FAN Shaojia(School of Atmospheric Sciences,Sun Yat-sen University,Zhuhai 519082;Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary,Guangzhou 510275;Guangdong Meteorological Public Service Center,Guangzhou 510640)
出处
《环境科学学报》
CAS
CSCD
北大核心
2023年第1期42-53,共12页
Acta Scientiae Circumstantiae
基金
广东省科技计划项目(科技创新平台类)(No.2019B121201002)
广东省基础与应用基础研究重大项目(No.2020B0301030004)
广东省重点领域研发计划项目(No.2020B1111360003)。