摘要
为了实现大气湍流动态干扰下望远镜对远距离目标的超衍射极限成像,采用光学超振荡原理局部衍射压缩光学系统点扩散函数,并对提高成像分辨率效果进行了理论研究。结果表明,中等湍流强度校正后,波前残差均方根约为波长的1/15(波长λ=632.8 nm)时的干扰下,超振荡光场调制能够实现望远系统点扩散函数的衍射压缩,衍射压缩倍率为0.75;对不同中心间距双孔的成像研究验证了超振荡望远系统约0.80倍瑞利衍射极限的超分辨成像效果;波前残差的均方根大小可能会导致望远系统点扩散函数的衍射压缩倍率和成像分辨率存在差异。此研究结果可应用于高精度星点定位、超分辨望远等领域。
In order to achieve sub-diffraction limited imaging of the distant objects with telescope under the dynamical disturbance of the atmospheric turbulence, the optical super-oscillation phenomenon was utilized to locally compress the point spread function of the telescope. Theoretical study was performed to investigate the imaging resolution improvement with super-oscillation phenomenon. In the case of the modest atmospheric turbulence, the adaptive optics closed-loop root mean square of the simulated residual wave front error is about 1/15 of wavelength. The numerical full width at half maxima of the super-oscillation spot is about 0.75 times of the Airy spot at the working wavelength of 632.8 nm. In addition, the imaging results of the two holes with different center-to-center distances validate that the resolving ability of the super-oscillation telescope is about 0.80 times of the Rayleigh criterion. Different root mean square of the residual wave front error would result in the diffractive compression ratio of the telescope’s point spread function and the improvement of the imaging resolution. It is believed that this study provides a practical method for the high-precision star positioning and the super-resolution telescope etc.
作者
周健文
姚纳
赵汗青
张云凡
焦蛟
孙旭
伍波
ZHOU Jianwen;YAO Na;ZHAO Hanqing;ZHANG Yunfan;JIAO Jiao;SUN Xu;WU Bo(College of Optoelectronic Technology,Chengdu University of Information Technology,Chengdu 610225,China;School of Aeronautics&Astronautics,University of Electronic Science and Technology of China,Chengdu 610054,China)
出处
《激光技术》
CAS
CSCD
北大核心
2023年第1期115-120,共6页
Laser Technology
基金
国家自然科学基金资助项目(62005038
61805220)
成都信息工程大学科研启动项目(KYTZ201801)。
关键词
傅里叶光学
望远镜
超振荡
大气湍流
Fourier optics
telescope
super-oscillation
atmospheric turbulence