期刊文献+

基于蒙特卡洛仿真的无人机机载LiDAR点云精度预估 被引量:1

Accuracy Estimation of UAV-borne LiDAR Point Cloud Based on the Monte Carlo
下载PDF
导出
摘要 受多种因素的综合影响,传统基于定位误差传播方程的方法难以对无人机机载LiDAR点云精度进行准确预估。鉴于此,提出了一种基于蒙特卡洛仿真的无人机机载LiDAR点云精度预估方法,通过蒙特卡洛仿真,直接分析误差源对点云坐标精度的影响。该方法不仅可以预估误差源对激光点云的整体精度影响,而且可对点云精度影响的空间分布规律进行直观分析。实际工程项目应用结果表明,预估精度与工程实际精度吻合较好,验证了方法的有效性。该方法可为激光测量项目的精度预估、设备选型提供有效依据,具有显著的社会和经济效益。 It’s really hard to estimate the accuracy of UAV-borne LiDAR point cloud precisely based on the traditional positioning error equation method due to many complex systemic errors.In this paper,we proposed an accuracy estimation method of UAV-borne LiDAR point cloud based on the Monte Carlo.We calculated the relationship between error source and the 3D coordinates of point cloud directly by Monte Carlo.The method can not only estimate the accuracy of point cloud precisely,but also analyze the spatial distribution of accuracy intuitively.The experimental result indicates that the estimated accuracy is in good agreement with the actual accuracy,which verifies the feasibility of this method.It can provide effective evidence of accuracy estimation as well as equipment selection,which has notable social and economic benefits.
作者 刘亚萍 明洋 王刊生 张霄 LIU Yaping;MING Yang;WANG Kansheng;ZHANG Xiao(CCCC Second Highway Consultants Co.,Ltd.,Wuhan 430056,China)
出处 《地理空间信息》 2023年第1期74-78,共5页 Geospatial Information
基金 中交第二公路勘察设计研究院有限公司科技研发资助项目(KJFZ-2016-065,KJFZ-2017-046,KJFZ-2018-043)。
关键词 无人机机载LiDAR 蒙特卡洛仿真 精度预估 角元素误差 UAV-borne LiDAR Monte Carlo accuracy estimation attitude error
  • 相关文献

参考文献11

二级参考文献78

  • 1郭洁瑛,刘笑,王伟.激光跟踪仪水平与垂直角对测量精度影响的试验研究[J].航天器环境工程,2010,27(5):643-645. 被引量:9
  • 2陈功,程正逢,石克勤,张健,龙维.激光雷达在电力线路工程勘测设计中的应用[J].电力勘测设计,2006,18(5):53-56. 被引量:31
  • 3王成,Menenti M,StollM P,李传荣,唐伶俐.机载激光雷达数据的误差分析及校正[J].遥感学报,2007,11(3):390-397. 被引量:37
  • 4Kevin B. Strawbridge. Airborne and scanning lidar results obtained during pacific 2001 in the lower fraser valley of British Columbia [C]. SPIE, 2004, 5235 : 525-536. 被引量:1
  • 5E. P. Baltsavias. Airborne laser scanning: existing systems and firms and other resources [J].ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2-3) : 164- 198. 被引量:1
  • 6E. P. Baltsavias. A comparison between photogrammetry and laser scanning [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2-3) :83-94. 被引量:1
  • 7W. B. Krabill, W. Abdalati, E. S. Frederick et al.. Aircraft laser altimetry measurement of elevation changes of the Greenland ice sheet: technique and accuracy assessment [J]. Journal of Geodynamics, 2002, 34 : 357-376. 被引量:1
  • 8T. Schenk. Modeling and recovering systematic errors m airborne laser scanners [C]. Proceedings of the OEEPE Workshop on Airborne Laser Scanning and Interferometric SAR for Detailed Digital Elevation Models, OEEPE Publication, 2001, 40:40-48. 被引量:1
  • 9G. Vosselman. Slope based filtering of laser altimetry data [J]. International Archives of Photogrammetry and Remote Sensing, 2000, X X XⅢ(B3):935-942. 被引量:1
  • 10Camillo Ressl, Gottfried Mandlburger, Norbert Pfeifer. Investigating adjustment of airborne laser scanning strips without usage of GNSS/IMU trajectory data [C]. Laser Scanning 2009, IAPRS, Paris, France, 2009, X X XⅧ(3/W8):195-200. 被引量:1

共引文献106

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部