期刊文献+

基于GIS+人工智能的市政设施管养系统研发与应用实践

Development and Practical Application of Municipal Facility Management and Maintenance System Based on GIS and AI
原文传递
导出
摘要 市政设施是城市管理的重要组成部分,传统市政设施管养以“发现问题、解决问题”的被动式运维为主,是城市精细化管理的薄弱环节。在深入分析市政设施智慧管养需求的基础上,设计了智慧管养系统的系统架构;开发了市政设施GIS地图驾驶舱模块;融合边缘侧采集系统数据、道路运行数据、日常养护和应急保养数据实现实施运行数据接入;采用深度学习技术实现对道路裂缝、坑槽、积水结冰等典型病害的智能识别与预警。在实际项目应用表明,基于GIS+人工智能技术的市政设施管养系统可高效助力路桥病害识别、时空演化和发展趋势分析,对于市政养护高效、高标准、智能化发展具有重要作用。 Municipal facilities are an important part of urban management.Traditional municipal facility management and maintenance,mainly passive operation and maintenance in the form of"problem discovery and problem solving",is a weak link in refined urban management.On the basis of analyzing the demand of municipal facilities for intelligent management and maintenance,this paper designed the architecture of a smart management and maintenance system.Subsequently,a geographic information system(GIS)map-equipped cockpit module was developed for municipal facilities.Then,data from the edge-side collection system,road operation data,daily maintenance and emergency maintenance data were fused for the real-time operation data access.Deep learning technology was used for the intelligent identification and early warning of typical diseases,such as road cracks,potholes,stagnant water,and ice.The application in actual projects shows that the proposed municipal facility management and maintenance system based on GIS and artificial intelligence(AI)technologies can efficiently assist road and bridge disease identification and analysis of spatiotemporal evolution and development trends and it thus plays an important role in the efficient,high-standard,and intelligent development of municipal maintenance.
作者 何瑞琦 余芳强 许璟琳 赵震 张明正 HE Ruiqi;YU Fangqiang;XU Jinglin;ZHAO Zhen;ZHANG Mingzheng(Shanghai Construction No.4(Group)Co.,Ltd.,Shanghai 201103,China)
出处 《工业建筑》 CSCD 北大核心 2022年第10期236-241,共6页 Industrial Construction
基金 国家重点研发计划课题(2020YFD1100604)。
关键词 市政设施 地理信息系统 智慧管养 病害识别 municipal facility geographic information system intelligent management and maintenance disease identification
  • 相关文献

参考文献5

二级参考文献38

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部