期刊文献+

融合黄金正弦算法和纵横交叉策略的秃鹰搜索算法 被引量:5

Bald eagle search optimization algorithm with golden sine algorithm and crisscross strategy
下载PDF
导出
摘要 针对传统秃鹰搜索算法(BES)存在容易陷入局部最优、收敛速度慢等缺点,提出一种融合黄金正弦算法(Gold-SA)和纵横交叉策略的秃鹰搜索算法(GSCBES)。首先,在传统BES的搜索阶段设置基于惯性权重的位置更新公式;然后,在捕食猎物阶段引入Gold-SA;最后,引入纵横交叉策略对全局最优和种群进行修正。对11个Benchmark函数和CEC2014函数进行仿真实验并使用Wilcoxon秩和检验的方式评估所提算法的寻优能力,结果表明,所提算法收敛更快;同时,使用所提算法对反向传播(BP)神经网络模型的权值和阈值进行赋值,并将优化的BP神经网络模型用于空气质量的预测中,平均绝对误差(MAE)、均方根误差(RMSE)、均方误差(MSE)、平均绝对百分比误差(MAPE)值均小于BP神经网络模型以及基于粒子群优化(PSO)的BP神经网络模型,预测精确度有所提高。 Aiming at the disadvantages of traditional Bald Eagle Search optimization algorithm(BES), such as easy to fall into the local optimum and slow convergence, a BES with Golden Sine Algorithm(Gold-SA) and crisscross strategy(GSCBES) was proposed. Firstly, the position update formula based on inertia weight was set in the traditional BES search stage. Then, Gold-SA was introduced in the stage of predation. Finally, the crisscross strategy was introduced to modify the global optimum and population. The optimization ability of the proposed algorithm was evaluated by the simulation experiments on 11 Benchmark functions, CEC2014 functions and by using Wilcoxon rank sum test. The results show that the proposed algorithm converges faster. At the same time, the weights and thresholds of Back Propagation(BP) neural network were assigned by the proposed algorithm, and the optimized BP neural network model was used in the prediction of air quality, the values of Mean Absolute Error(MAE), Root Mean Square Error(RMSE), Mean Square Error(MSE), and Mean Absolute Percentage Error(MAPE) are smaller than those of BP neural network model and Particle Swarm Optimization(PSO) based BP neural network model,and the prediction accuracy is improved.
作者 赵沛雯 张达敏 张琳娜 邹诚诚 ZHAO Peiwen;ZHANG Damin;ZHANG Linna;ZOU Chengcheng(College of Big Data and Information Engineering,Guizhou University,Guiyang Guizhou 550025,China;School of Mechanical Engineering,Guizhou University,Guiyang Guizhou 550025,China)
出处 《计算机应用》 CSCD 北大核心 2023年第1期192-201,共10页 journal of Computer Applications
基金 国家自然科学基金资助项目(62062021,61872034) 贵州省科学技术基金资助项目(黔科合基础[2020]1Y254,黔科合基础[2019]1064)。
关键词 秃鹰搜索算法 纵横交叉策略 黄金正弦算法 惯性权重 测试函数 Bald Eagle Search optimization algorithm(BES) crisscross strategy Golden Sine Algorithm(Gold-SA) inertial weight test function
  • 相关文献

参考文献12

二级参考文献56

共引文献188

同被引文献36

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部