摘要
The present work suggested the use of waste oil palm frond as an alternative precursor for nitrogendoped carbon quantum dots(NCQDs)and proposed a straightforward in-situ hydrothermal method for the preparation of NCQDs/TiO_(2)nanocomposites.The elemental composition,morphological,structural and optical characteristics of NCQDs/TiO_(2)nanocomposites have been comprehensively investigated.The successful grafting of NCQDs on TiO_(2)matrix was confirmed by the formation of Ti AOAC bond and the electronic coupling between theπ-states of NCQDs and the conduction band of TiO_(2).For the first time,the oil palm frond-derived NCQDs/TiO_(2)was adopted in the photodegradation of methylene blue(MB)under visible-light irradiation.As a result,the photocatalytic efficiency of NCQDs/TiO_(2)nanocomposites(86.16%)was 2.85 times higher than its counterpart TiO_(2)(30.18%).The enhanced performance of nanocomposites was attributed to the pivotal roles of NCQDs serving as electron mediator and visiblelight harvester.Besides,the optimal NCQDs loading was determined at 4 ml while the removal efficiency of NCQDs/TiO_(2)-4 was the highest at a catalyst dosage of 1 g.L^(-1)under alkaline condition.This research work is important as it proposed a new insight to the preparation of biomass-based NCQDs/TiO_(2)using a facile synthetic method,which offers a green and sustainable water remediation technology.
基金
the funding provided by Universiti Tunku Abdul Rahman Research fund(IPSR/RMC/UTARRF/2020-C2/C06)
Centre for Photonics and Advanced Materials Research(CPAMR,UTAR)for their support。