摘要
Cr(Ⅵ) is a common heavy metal ion, which will seriously harm human body and environment.Therefore, the removal of Cr(Ⅵ) has become an attractive topic.In this work, cinder was used as a raw material to synthesize a nanoneedle material: γ-(AlOOH@FeOOH)(γ-Al@Fe).The physicochemical properties of γ-Al@Fe were thoroughly characterized, and its effectiveness as a catalyst for photocatalytic reduction of Cr(Ⅵ) was evaluated.The results showed that Cr(Ⅵ) could be efficiently reduced by γ-Al@Fe in the presence of tartaric acid(TA) under visible light.The variable factors on the reaction were investigated in detail, and the results showed that under optimal conditions(γ-Al@Fe 0.4 g/L, TA 0.6 g/L, pH 2), Cr(Ⅵ)was completely reduced within 7 min.Besides, scavenger experiments and EPR proved that O_(2)^(·-) and CO_(2)^(·-) played a significant role in the photocatalytic reduction of Cr(Ⅵ).TA acts as a sacrificial agent to trap the holes and generate strong reducing free radicals: CO_(2)^(·-).Dissolving O_(2) could react with electrons to generate O_(2)^(·-).This work discussed the performance and mechanism of photocatalytic reduction of Cr(Ⅵ) in detail, which provided a new idea for the resource utilization of solid waste and the treatment of heavy metal sewage.
基金
supported by the National Natural Science Foundation of China (Nos.51672077, 51872089)。