摘要
针对不平衡数据集下风电机组齿轮箱故障诊断准确率低以及故障特征不明显的问题,提出峭度指标与遗传算法优化Wasserstein距离生成对抗网络(WGAN)的故障诊断方法。首先将峭度指标作为语义标签映射到卷积层规格化故障特征,其次在反卷积网络中对宏基因组二进制编码并权重初始化,然后对不平衡样本集进行多点交叉和高斯近似变异,重点搜索局部故障点,最后将峭度作为有标签的负例输入判别器网络,重构反卷积和VGG神经网络提高权重剪裁,使WGAN网络成为半监督学习模型,正向判断更新权重并输出诊断结果。实验表明:该方法在不平衡数据集下诊断准确率达到98.69%,拥有更高的泛化能力和特征提取能力,实现了故障特征的增强。
To solve the problem of low-fault diagnostic accuracy and unclear fault characteristics of wind turbine gearboxes under unbalanced data sets,a fault diagnosis method of Wasserstein generative adversarial networks optimized by kurtosis label and genetic algorithm is proposed in this paper. Firstly,the kurtosis label is mapped to the convolution layer as a semantic label to normalize the fault features. Secondly,the metagenomics is binary coded and the weights are initialized in deconvolution networks. Then,multi-point crossover and gaussian approximate variation are performed on the unbalanced sample sets to search for local faults. Finally,kurtosis is inputted to the discriminator network as labeled negative cases,and deconvolution and VGG neural networks are reconstructed to improve weight cutting. The WGAN network becomes a semi-supervised learning model,which can update weight forward judgment and output diagnostic results. Experimental results showed that the diagnostic accuracy of the proposed method could reach 98.69% under unbalanced data sets,indicating that it has a higher generalization ability and feature extraction ability,which can enhance fault features.
作者
苏元浩
孟良
许同乐
孔晓佳
兰孝升
李云凤
Su Yuanhao;Meng Liang;Xu Tongle;Kong Xiaojia;Lan Xiaosheng;Li Yunfeng(School of Mechanical Engineering,Shandong University of Technology,Zibo 255049,China)
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2022年第11期148-155,共8页
Acta Energiae Solaris Sinica
基金
山东省自然科学基金(ZR2021ME221)。
关键词
风电机组
齿轮箱
生成对抗网络
遗传算法
峭度
半监督学习
故障诊断
wind turbines
gearboxs
generative adversarial network
genetic algorithm
kurtosis
semi-supervised learning
fault diagnosis