期刊文献+

基于心率变异性与机器学习相结合的警觉度水平监测 被引量:1

Vigilance Level Detection Based on Heart Rate Variability and Machine Learning
下载PDF
导出
摘要 针对目前警觉性监测指标单一且不精确等问题,将心率变异性结合机器学习对警觉度水平进行监测。48名受试者连续完成5组精神运动警戒任务(PVT),同时进行心电测量。将PVT任务的反应时分为5级,使用多分类支持向量机方法,对警觉性分级进行预测。在行为结果上,表现为PVT测试反应时相关指标的延长;在生理指标上,反映为心率变异性高频指标(HF-HRV)以及极低频指标(VLF-HRV)的增加。VLF-HRV与反应时的平均数以及反应时的中位数呈现显著的正相关,与反应时倒数的平均值呈现出显著的负相关。HF-HRV也与反应时的平均数以及反应时的中位数呈现显著的正相关。采用多分类支持向量机手段对受试者的警觉度进行预测,结果表明,单独使用2种心电指标对警觉度水平进行预测的平均准确率为77.81%,ROC曲线下的平均面积为0.87,平均灵敏度为0.763,平均特异度为0.792。研究表明:心率变异性是反映警觉度波动变化的敏感指标,可用于开展警觉度的预测。 Till now,there are few indexes for precise prediction of vigilance fluctuation.In this study,heart rate variability and machine learning were combined together to detect vigilance level.48 subjects were recruited to finish a 5-block psychomotor vigilance task(PVT).Meanwhile,electrocardiography(ECG)data was collected during the experiment.PVT reaction time was divided into five levels and multi-class support vector machine was used to predict the vigilancelevel by heart rate variability.PVT reaction time became longer during the task,which was accompanied by increase of HF-HRV and VLF-HRV.VLF-HRV was negatively correlated with mean of reciprocal reaction time and positively correlated with median of reaction time.While HF-HRV was positively correlated with both mean and median of reaction time.In the end,multi-class support vector machine was used to predict the vigilance level by HF-HRV and VLFHRV.The results showed that the mean accuracy was 77.81%;the area under ROC curve was 0.811;the mean sensitivity was 0.763;and the mean specificity was 0.792.It was concluded that heart rate variability was sensitive to the fluctuation of vigilance level and could be utilized in prediction of vigilance.
作者 周维逸 周仁来 ZHOU Weiyi;ZHOU Renlai(Department of Psychology,Nanjing University,Nanjing 210023,China)
机构地区 南京大学心理系
出处 《载人航天》 CSCD 北大核心 2022年第6期779-784,共6页 Manned Spaceflight
基金 载人航天工程航天医学实验领域项目(HYZHXM03008)。
关键词 警觉度 心率变异性 机器学习 生理指标 vigilance heart rate variability machine learning physiological index
  • 相关文献

参考文献7

二级参考文献70

  • 1冯燕.游泳运动员大负荷训练中心理、生理疲劳和应对方式[J].天津体育学院学报,2004,19(3):54-56. 被引量:16
  • 2刘方琳,张力为.运动员心理疲劳的定性探索[J].体育科学,2004,24(11):37-44. 被引量:82
  • 3郭玮珍,郭兴明,万小萍.以心率和心率变异性为指标的疲劳分析系统[J].医疗卫生装备,2005,26(8):1-2. 被引量:11
  • 4曹雪亮,苗丹民,皇甫恩,侯艳红,孙云峰.63h睡眠剥夺对外显操作自我监控的元认知能力的影响[J].中国临床心理学杂志,2005,13(3):327-329. 被引量:1
  • 5曹雪亮,苗丹民,刘练红.脑力疲劳评定方法现状[J].第四军医大学学报,2006,27(4):382-384. 被引量:27
  • 6Mulder LJM, Kruizinga A, Stuiver A, et al. Monitoring cardiovascular state changes in a simulated ambulance dispatch task for use in adaptive automation [A]. In: Waard D, Brookhuis KA, Weikert CM, eds. Human factors in design [ C]. Maastricht: Shaker Publishing, 2004. 161 - 175. 被引量:1
  • 7Seong HM, Lee JS, Shin TM, et al. The analysis of mental stress using time-frequency distribution of heart rate variability signal [ A ]. In: Proceedings of the 26th Annual International Conference of the IEEE [C]. San Francisco: IEEE EMBS, 2004:283 - 285. 被引量:1
  • 8Salahuddin L, Cho J, Jeong MG, et al. Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings [ A]. In: Proceedings of the 29th Annual International Conference of the IEEE [C]. Lyon: IEEE EMBS, 2007:4656 - 4659. 被引量:1
  • 9David WW. Physiological correlates of heart rate variability (HRV) and the subjective assessment of workload and fatigue in-flight crew: a practical study [ A]. In: People in Control. An International Conference on Human Interfaces in Control Rooms [C]. Manchester: Cockpits and Command Centers, 2001. 159 - 163. 被引量:1
  • 10Tal OG, Hancock PA. Road environment and driver fatigue [A]. In: Proceedings of the Third International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Desizn[C]. Maine : Rockport.2005.318 - 324. 被引量:1

共引文献151

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部