摘要
研究了一类包含无症状和有症状感染的COVID-19模型,考虑了非药物干预措施对传染病传播的影响。运用下一代矩阵法计算出基本再生数R_(0),并讨论了地方病平衡点的存在性。利用Routh-Hurwitz判据和LaSalle不变集原理,证明了当R_(0)<1时,无病平衡点是局部渐近稳定和全局渐近稳定的;利用中心流形理论,证明了当R_(0)>1时,地方病平衡点是局部渐近稳定的。通过数值模拟,验证了在非药物干预措施的情况下感染人群显著减少的结论。
In this paper,a COVID-19 model including asymptomatic and symptomatic infections is studied,and the influence of non-pharmaceutical interventions on the spread of infectious diseases is considered.The basic reproduction number R_(0) is calculated by the next-generation matrix method and the existence of endemic equilibrium is discussed.By using Routh-Hurwitz criterion and invariance principle LaSalle,it is proved that the disease-free equilibrium is locally asymptotically stable and globally asymptotically stable when R_(0)<1.Using the center manifold theory,it is proved that the endemic equilibrium is locally asymptotically stable when R_(0)>1.Finally,the numerical simulation verifies the conclusion that the infected number of individuals significantly decreases with non-pharmaceutical interventions.
作者
白雪花
薛亚奎
BAI Xuehua;XUE Yakui(School of Science,North University of China,Taiyuan 030051,China)
出处
《重庆理工大学学报(自然科学)》
CAS
北大核心
2022年第11期241-248,共8页
Journal of Chongqing University of Technology:Natural Science
基金
国家自然科学基金青年科学基金项目(11301491)
山西省自然科学青年基金项目(2018010221040)
山西“1331”工程重点创新团队项目。