期刊文献+

一类SEIR流行病模型的全局稳定性分析 被引量:5

Global Stability Analysis of a SEIR Epidemic Model
下载PDF
导出
摘要 研究了一类具有常数移民的SEIR流行病模型地方病平衡点的全局稳定性。借助于基于时间平均性质的全局稳定性判定的新方法,给出了地方病平衡点全局稳定性的条件,改进了以往文献中关于全局稳定性的结果。 We investigate global stability of the endemic equilibrium of a SEIR epidemic model with constant immigration. Based on the time average property and our new method to determine the global stability,we obtain the conditions for global stability of the endemic equilibrium,which improved the achievements of existing literature.
作者 赵亚飞 苏强 吕贵臣 ZHAO Yafei , SU Qiang , LYU Guichen(College of Science ,Chongqing University of Technology,Chongqing400054,Chin)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2018年第5期225-228,235,共5页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(11401062) 重庆市科委前沿与应用基础研究项目(cstc2014jcyj A00023)
关键词 全局稳定性 Li-Muldowney几何方法 时间平均性质 global asymptotic stability Li-Muldowney's geometric approach time average property
  • 相关文献

参考文献8

二级参考文献51

  • 1苟清明,王稳地.一类有迁移的传染病模型的稳定性[J].西南师范大学学报(自然科学版),2006,31(1):18-23. 被引量:6
  • 2Iwami S, Takeuchi Y, Korobeinikov A, Liu X. Prevention of avian influenza epidemic: What policy should we choose[J]. Journal of Theoretical biology, 2008, (252): 732-741. 被引量:1
  • 3Iwami S, Takeuchi Y, Liu X. Avian-human influenza epidemic model[J]. Mathematical Biosciences, 2007, (207): 1-25. 被引量:1
  • 4Rao D M, Chernyakhovsky A, Rao V. Modelling and analysis global epidemiology of avian in- fluenza[J]. Environmental Modelling and Software, 2009, (24): 124-134. 被引量:1
  • 5Wang W, Backward bifurcation of an epidemic model treatment[J]. Mathematical Biosciences, 2006, (201): 58-71. 被引量:1
  • 6Zhang X, Liu X. Backward bifurcation of an epidemic model with saturated treatment function[J]. Journal of Mathematical Analysis and Applications, 2008, (348): 433-443. 被引量:1
  • 7Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model[J]. Mathematical Biosciences, 1978, (42): 43-61. 被引量:1
  • 8Wang K, Wang W, Liu X. Viral infection model with periodic lytic immune response[J]. Chaos Solitons and Fractals, 2006, (28): 90-99. 被引量:1
  • 9Li M Y, Muldowney J S. A Geometric Approach to Global-Stability Problems [J].SIAM J Math Anal, 1996, 27(4): 1070 - 1083. 被引量:1
  • 10Thieme H R. Persistence Under Relaxed Point-Dissipativity (with an Application to an Endemic Model)[J]. SIAM J Math Anal, 1993, 24(2): 407-435. 被引量:1

共引文献28

同被引文献21

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部