摘要
复分析的核心理论是解析函数论。解析函数有其很好的性质,在物理学、机械、力学等方面有广泛的应用。本文深入探讨有界解析函数的导数估计式。运用有界解析函数的系数不等式和最大模原理对之前已有的有界解析函数的三阶、四阶导数估计式进行推广,得到比之前结论更精确的表达式,进而得到较以往不同的n阶导数估计式。使得有界解析函数的导数估计问题从理论上得到升华。
The core theory of Complex Analysis is Analytic Function Theory.Analytical Function has very good properties,with a wide range of applications in physics,machinery,mechanics and other aspects.In this paper,the derivative estimators of Bounded Analytic Functions are discussed in depth.By using the coefficient inequality of Bounded Analytic Functions And the principle of Maximum Modulus,the third and fourth derivative estimators of Bbounded Analytic Functions are generalized,in which more accurate expressions are achieved,and then the different derivative estimators are obtained.The problem of derivative estimation of Bounded Analytic Functions is sublimated theoretically.
作者
李晓焱
LI Xiao-yan(School of Mathematics and Statistics,Yulin University,Yulin 719000,China)
出处
《榆林学院学报》
2022年第6期62-66,75,共6页
Journal of Yulin University
基金
榆林市科技局计划项目(CXY-2020-007)。
关键词
解析函数
有界解析函数
导数估计
Analytic Function
Bounded Analytic Function
derivative estimation