期刊文献+

面向水域场景的热成像人员识别算法研究 被引量:2

Research on thermal imaging personnel recognition algorithm for water scene
下载PDF
导出
摘要 针对水域场景夜间能见度极低,难以实现人员目标检测与定位的问题,结合红外热成像技术与深度学习目标检测算法,研究了一种黑暗环境下水域人员目标检测方法。经过多场景实地采集,自主构建了一套热成像水域场景下的人员目标数据集IR-YZ。在对比经典目标检测方法在IR-YZ数据集上的性能的基础上,针对热成像特点与水域环境特点,提出了一种增强型轻量级水上目标检测网络IWPT-YOLO(infrared water person target-YOLO)。实验结果表明,IWPT-YOLO算法具有精确、快速、简洁等优势,其模型大小为93 MB,平均精度mAP达到了85.34%,检测速度达到了20.975 FPS,比经典算法YOLOv3网络与SSD网络在模型大小、平均精度与检测速度上均有提高,验证了IWPT-YOLO算法对水域场景下的热成像人员目标具有更好的检测性能,更明显的优势。 Aiming at the problem of the extremely low visibility of water scene low at night, which results in the difficulty in detecting and locating personnel targets, the author combines infrared thermal imaging technology with deep learning object detection algorithm to study an object detection method for people in dark water area. After multi-scene field collection, a set of human target data set IR-YZ in thermal imaging water scene was independently constructed. On the basis of the performance of the IR-YZ data set and compared with the classical object detection methods, environmental characteristics, an enhanced lightweight water object detection network infrared water person target-YOLO is proposed, featuring the characteristics of thermal imaging and water areas. The experimental results show that the IWPT-YOLO algorithm has the advantages of being more accurate, faster and more concise than those of the classical algorithm. The model size is 93 MB, the average precision mAP reaches 85.34%, and the detection speed reaches 20.975 FPS. Compared with the classic algorithm YOLOv3 network and SSD network, the model size, average precision and detection speed are all improved. It verifies that the IWPT-YOLO algorithm has better detection performance and more obvious advantages for the characteristics of thermal imaging and water areas.
作者 党相昭 何赟泽 程亮 杜闯 刘圳康 杨春利 王磊刚 杨士远 Dang Xiangzhao;He Yunze;Cheng Liang;Du Chuang;Liu Zhenkang;Yang Chunli;Wang Leigang;Yang Shiyuan(College of Electrical and Information Engineering,Hunan University,Changsha 410082,China;School of Ocean Engineering,Jiangsu Ocean University,Lianyungang 222005,China;Zhuhai Yunzhou Intelligent Technology Co.,Ltd.,Zhuhai 519085,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2022年第8期187-193,共7页 Journal of Electronic Measurement and Instrumentation
基金 湖南省自然科学基金重大项目(S2021JJZDXM0022) 湖南省重点研发计划(S2021GCZDYF0800) 珠海云洲智能科技有限公司委托课题(H202191400326)项目资助。
关键词 红外热成像 目标检测 YOLO 智能救生 无人艇 infrared thermal imaging object detection YOLO intelligent lifesaving unmaned surface vessel
  • 相关文献

参考文献11

二级参考文献66

共引文献202

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部