期刊文献+

轻量化卷积神经网络在药片检测分类中的应用

Application of Lightweight Convolution Neural Network in Tablet Detection Classification
下载PDF
导出
摘要 在药片残缺检测分类任务中,为衡量分类模型的精度与模型大小,保证模型精度的同时,减少计算量和参数量。提出一种改进的GhostNet轻量化神经网络,保证在加工过程中能够有效地检测出残缺药片。构建数据集并增强处理,压缩网络模型,将注意力机制升级为ECA模块。实验结果显示,改进后的网络模型能够达到98.85%的分类精度,模型参数量仅为0.635×10^(6)。与其它轻量化网络进行了对比分析,取得了更高的分类精度,更少的参数量和计算量,更优的分类性能。 In the task of tablet defect detection and classification,in order to measure the accuracy and size of the classification model,ensure the accuracy of the model,and reduce the amount of calculation and parameters.In this paper,an improved GhostNet lightweight neural network is proposed to ensure that incomplete tablets can be effectively detected in the processing process.Build data sets and enhance processing,compress network models,add dropout layer to prevent over fitting,and upgrade attention mechanism to ECA module.The experimental results show that the improved network model can achieve 98.85%classification accuracy,and the model parameter is only 0.635×10^(6).Compared with other lightweight networks,it achieves higher classification accuracy,less parameters and computation,and better classification performance.
作者 黄开坤 徐兴 Huang Kaikun;Xu Xing(School of Mechanical Engineering,University of South China,Hengyang 421001)
出处 《现代计算机》 2022年第19期81-86,共6页 Modern Computer
关键词 图像处理 GhostNet 注意力机制 轻量化网络 image processing GhostNet attention mechanism lightweight network
  • 相关文献

参考文献6

二级参考文献80

  • 1王馥宇,黄梅珍,曾涛,管相宇,孙小小,汪洋.针剂中异物的光电检测方法研究[J].光子学报,2012,41(3):375-378. 被引量:6
  • 2王冰,职秦川,张仲选,耿国华,周明全.灰度图像质心快速算法[J].计算机辅助设计与图形学学报,2004,16(10):1360-1365. 被引量:32
  • 3徐涛,高玉成,武星.对于光阻法在对小粒径微粒检测时的原理分析[J].仪器仪表学报,2005,26(1):13-16. 被引量:16
  • 4吕扬,郑启泰,伍伯牧.中草药化学成分的晶体结构图谱库系统[J].药学学报,1993,28(6):442-449. 被引量:10
  • 5J Derganc, B Likar, R Bernard, Tomazevic D, & Pernus F. Real -time automated visual inspection of color tablets in pharmaceutical blisters[J]. Real-Time Imaging, 2003,9(2) : 113-124. 被引量:1
  • 6M Mozina, D Tomazevic, F Pernug, B Likar. Real-time image segmentation for visual inspection of pharmaceutical tablets [ J ]. Machine vision and applications, 2011,22( 1 ) :145-156. 被引量:1
  • 7N M Duong, M T Chew, S Demidenko, Q H Pham, D K Pham, M L Ooi, Y C Kuang. Vision inspection system for pharmaceuticals [ C ]. Sensors Applications Symposium ( SAS ), 2014 IEEE, 2014 : 201-206. 被引量:1
  • 8Z Chaczko, A Kale. Automated Tablet Quality Assurance and I- dentification for Hospital Pharmacies [ J ]. International Journal of Electronics and Telecommunications, 2011,57 ( 2 ) : 153-158. 被引量:1
  • 9M Mozina, D Tomazevic, F Pernus, B Likar. Automated visual in- spection of imprint quality of pharmaceutical tablets [ J ]. Machine vision and applications, 2013,24( 1 ) :63-73. 被引量:1
  • 10E M Ackley, M Ford. Inspection system [ R ]. U.S. Patent Ap- plication 13/740, 684. 2013-1-14. 被引量:1

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部