期刊文献+

G_(2)型丛代数中丛单项式线性无关性的范畴化证明

Linear independence of cluster monomials of cluster algebras of type G_(2) via categorification
原文传递
导出
摘要 利用范畴化的方法,通过建立从丛倾斜代数的有限生成模范畴中不可分解的刚性对象,到对应的丛代数中丛变量的Caldero-Chapoton公式,证明Fomin-Zelevinsky关于丛代数中丛单项式的线性无关猜想对G型丛代数成立。 Using the method of categorization, Fomin-Zelevinsky?s conjecture about the linear independence of cluster monomials in all cluster algebras holds for cluster algebras of type Gis proved, by establishing the Caldero-Chapoton formula from the indecomposable rigid objects in the category of finitely generated modules of the cluster tilted algebra to the cluster variables of the corresponding cluster algebra.
作者 高昕昭 谢云丽 GAO Xin-zhao;XIE Yun-li(School of Mathematics,Southwest Jiaotong University,Chengdu 611756,Sichuan,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2022年第10期34-38,共5页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(12171397)。
关键词 丛代数 丛单项式 丛范畴 丛倾斜代数 Caldero-Chapoton公式 cluster algebra cluster monomial cluster category cluster tilted algebra Caldero-Chapoton formula
  • 相关文献

参考文献1

二级参考文献21

  • 1Adachi, T., Iyama, O., Reiten, I.: r-tilting theory. Compos. Math., 150(3), 415-452 (2014). 被引量:1
  • 2Assem, I., Simson, D., Skowronski, A.: Elements of the Representation Theory of Associative Algebras, Vol. 65, Cambridge Univ. Press, Cambridge, 2006. 被引量:1
  • 3Burban, I., Iyama, O., Keller, B., et al.: Cluster tilting for one-dimensional hypersurface singularities. Adv. Math., 217, 2443-2484 (2008). 被引量:1
  • 4Buan, A., Iyama, O., Reiten, I., et al.: Cluster structure for 2-Calabi-Yau categories and unipotent groups. Compos. Math., 145(4), 1035-1079 (2009). 被引量:1
  • 5Buan, A., Marsh, R., Reineke, M., et al.: Tilting theory and cluster combinatorics. Adv. Math., 204, 572-618 (2006). 被引量:1
  • 6Buan, A., Marsh, R., Vatne, D.: Cluster structure from 2-Calabi-Yau categories with loops. Math. Zeite., 265(4), 951-970 (2010). 被引量:1
  • 7Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (An case). Trans. Amer. Soc., 358(3), 1347-1364 (2006). 被引量:1
  • 8Fu, C. J., Liu, P.: Lifting to cluster-tilting objects in 2-Calabi-Yau triangulated categories. Comm. Algebra, 37(7), 2410-2418 (2009). 被引量:1
  • 9Fomin, S., Zelevinsky, A.: Cluster algebras I: Foundations. J. Amer. Math. Soc., 15(2), 497-529 (2002). 被引量:1
  • 10Holm, T., J0rgensen, P.: On the relation between cluster and classical tilting. J. Pure Appl. Algebra, 214, 1523-1533 (2010). 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部