期刊文献+

On Support τ-tilting Modules over Endomorphism Algebras of Rigid Ob jects 被引量:2

On Support τ-tilting Modules over Endomorphism Algebras of Rigid Ob jects
原文传递
导出
摘要 We consider a Krull-Schmidt, Hom-finite, 2-Calabi Yau triangulated category with a basic rigid object T, and show a bijection between the set of isomorphism classes of basic rigid objects in the finite presented category pr T of T and the set of isomorphism classes of basic T-rigid pairs in the module category of the endomorphism algebra Endc(T)op. As a consequence, basic maximal objects in prT are one-to-one correspondence to basic support τ-tilting modules over Endc(T)op. This is a generalization of correspondences established by Adachi-Iyama-Reiten. We consider a Krull-Schmidt, Hom-finite, 2-Calabi Yau triangulated category with a basic rigid object T, and show a bijection between the set of isomorphism classes of basic rigid objects in the finite presented category pr T of T and the set of isomorphism classes of basic T-rigid pairs in the module category of the endomorphism algebra Endc(T)op. As a consequence, basic maximal objects in prT are one-to-one correspondence to basic support τ-tilting modules over Endc(T)op. This is a generalization of correspondences established by Adachi-Iyama-Reiten.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第9期1508-1516,共9页 数学学报(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11131001) supported by BIT Basic Scientific Research Grant(Grant No.3170012211408)
关键词 Rigid object maximal rigid object τ-rigid object finite presented category Rigid object, maximal rigid object, τ-rigid object, finite presented category
  • 相关文献

参考文献21

  • 1Adachi, T., Iyama, O., Reiten, I.: r-tilting theory. Compos. Math., 150(3), 415-452 (2014). 被引量:1
  • 2Assem, I., Simson, D., Skowronski, A.: Elements of the Representation Theory of Associative Algebras, Vol. 65, Cambridge Univ. Press, Cambridge, 2006. 被引量:1
  • 3Burban, I., Iyama, O., Keller, B., et al.: Cluster tilting for one-dimensional hypersurface singularities. Adv. Math., 217, 2443-2484 (2008). 被引量:1
  • 4Buan, A., Iyama, O., Reiten, I., et al.: Cluster structure for 2-Calabi-Yau categories and unipotent groups. Compos. Math., 145(4), 1035-1079 (2009). 被引量:1
  • 5Buan, A., Marsh, R., Reineke, M., et al.: Tilting theory and cluster combinatorics. Adv. Math., 204, 572-618 (2006). 被引量:1
  • 6Buan, A., Marsh, R., Vatne, D.: Cluster structure from 2-Calabi-Yau categories with loops. Math. Zeite., 265(4), 951-970 (2010). 被引量:1
  • 7Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (An case). Trans. Amer. Soc., 358(3), 1347-1364 (2006). 被引量:1
  • 8Fu, C. J., Liu, P.: Lifting to cluster-tilting objects in 2-Calabi-Yau triangulated categories. Comm. Algebra, 37(7), 2410-2418 (2009). 被引量:1
  • 9Fomin, S., Zelevinsky, A.: Cluster algebras I: Foundations. J. Amer. Math. Soc., 15(2), 497-529 (2002). 被引量:1
  • 10Holm, T., J0rgensen, P.: On the relation between cluster and classical tilting. J. Pure Appl. Algebra, 214, 1523-1533 (2010). 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部